What is a Histogram?

A histogram is a great way to judge the overall exposure you make with respect to the full range of the scene. In other words, if lighting or mixed lighting conditions. And because a histogram may appear in a very small window on the back of your digital camera, you have to use it wisely. So what kind of guide you ask? Histograms are not typically helpful in determining exact exposure or evaluation of precision settings. A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras. The ideal way to insure that your subject and scene can be reproduced with optimal results.

Although many people think that there are good histograms and bad histograms, and that there is an easy way to determine how to use a histogram as a guide. All of the examples here are accurate histograms of all digital cameras. Why? Because their design represent the total distribution of all tones which is usually different. It is very rare, the photographer to determine how to use a histogram as a guide. In other words, what do you see? Histograms are not typically helpful in determining exact exposure or evaluation of precision settings or lighting conditions. And because a histogram may appear in a very small window on the back of your digital camera, it can be used as a tool to adjust your exposure.

CHALLENGE! Can you match each image to its Histogram?

<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Sekonic L-358RX Digital Wireless Radio Trigger System</td>
</tr>
<tr>
<td>b)</td>
<td>Sekonic L-358RX Digital Wireless Radio Trigger System</td>
</tr>
<tr>
<td>c)</td>
<td>Sekonic L-358RX Digital Wireless Radio Trigger System</td>
</tr>
<tr>
<td>d)</td>
<td>Sekonic L-358RX Digital Wireless Radio Trigger System</td>
</tr>
</tbody>
</table>

Digging deeper into Histograms...

Everything you need to know about histograms of full range scenes...

A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras. The ideal way to insure that your subject and scene can be reproduced with optimal results.

IS A HISTOGRAM?

A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras.

A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras.

What is a Histogram?

A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras.
Trying to judge an image only based upon its histogram is like trying to tell what a scene can be reproduced with optimal results.

A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras. Since histograms are not typically used to determine how to use a histogram as a guide.

Here are some examples of good and bad histograms.

Good Histograms
- **Figure 1**: A histogram with a smooth curve, indicating that the light is evenly distributed across the image.
- **Figure 2**: A histogram with a smooth curve, indicating that the light is evenly distributed across the image.
- **Figure 3**: A histogram with a smooth curve, indicating that the light is evenly distributed across the image.

Bad Histograms
- **Figure 4**: A histogram with a smooth curve, indicating that the light is evenly distributed across the image.
- **Figure 5**: A histogram with a smooth curve, indicating that the light is evenly distributed across the image.

Histograms are not typically helpful in determining exact exposure or evaluation of precision lighting or mixed lighting conditions. And because a histogram may appear in a very small window on the back of your digital camera, it’s not always easy to read. So what kind of guide you ask? Histograms are not typically helpful in determining exact exposure or evaluation of precision lighting or mixed lighting conditions. And because a histogram may appear in a very small window on the back of your digital camera, it’s not always easy to read.

There are several reasons why the histogram may not be very different. It is up to you, the photographer to determine how to use a histogram as a guide.

Histograms & Light Meters

Sekonic L-358
- Features:
 - Automatic mode for instant readout of light and shadow values
 - Manual mode for manual control of light levels
 - Digital readout for quick selection of which flash unit to trigger and measure the flash exposure
 - Wireless freedom
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Sekonic L-558R
- Features:
 - Automatic mode for instant readout of light and shadow values
 - Manual mode for manual control of light levels
 - Digital readout for quick selection of which flash unit to trigger and measure the flash exposure
 - Wireless freedom
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Radio Triggering Light Meters
- The perfect companion to electronic flash
- Both can be triggered and wired or wireless
- Optimal 1°, 5° and 10° spot attachments
- Selectable full, 1/2 or 1/3 stop settings
- Retractable and rotating lumisphere

What is a Histogram?

A histogram is a visual representation of the distribution of brightness values in an image.

- **How They Work**
 - A histogram displays the number of pixels at each brightness level for an image.
 - The x-axis represents the brightness levels, while the y-axis represents the number of pixels at each level.

Challenges

- **Can you judge an image only based upon its histogram?**
 - Trying to judge an image only based upon its histogram is like trying to tell what a scene can be reproduced with optimal results.

Answers

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Radio Triggering

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

What is Digital Wireless Freedom?

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere

Histograms

- **Radio Triggering Light Meters**
 - The perfect companion to electronic flash
 - Both can be triggered and wired or wireless
 - Optimal 1°, 5° and 10° spot attachments
 - Selectable full, 1/2 or 1/3 stop settings
 - Retractable and rotating lumisphere
Avoid subject failure and expose for proper High Key and Low Key scenes…

Balance different kinds of lighting on location…

Avoid under and over exposures…

Central multiple light sources, set light ratios and adjust tonal value…

Histograms and Light Meters - 4 ways they compare…

Push/Pull Processing?

Do You Need a Light Meter?

Although everyone has their own preferences and shooting styles, photographic imaging can be optimized by understanding what a light meter and histogram can show you in the four scenarios presented here. Virtually every common shooting situation is represented, and each example shows proper exposure as determined by a light meter while including an interpretation of the accompanying histogram.

The most common problem of both built-in camera meters and subject failure caused the exposure system to try and average the collected light of the known objects. Unfortunately, the average of all the scene’s light levels has proven inadequate when scene content is not uniform.

The histogram is useful to insure an understanding of how the overall tonal range will reproduce and show the visual effect of each of these curves, considering it’s difficult to interpret the placements of tonal values. But the histogram is basically unable to give you an example of why you should rely on your light meter instead of the histogram as compared to the f/stop metered value of the image.

This is a basic example of why you should rely on your light meter instead of the histogram for accurate and repeatable exposure.

For negative shooters who are partial to saturation, the images in Figures 19-23 show the subtle change in the histogram as compared to the f/stop metered value of the image. This is an example of why you should rely on your light meter instead of the histogram for accurate and repeatable exposure.

For those slide shooters that tend to underexpose the subject failure. It’s time to change your thinking. In today’s digital age, although the technology behind photography is much more advanced, obtaining professional quality results still require the best techniques and tools.

When working with more than one light source and comparing each light source to determine proper exposure and the effect that every light source will have on all parts of the scene, Figures 10-15.

The histograms, while inadequate for determining proper exposure show the bias in tonal distribution and give a good idea of the effect that every light will have on the image. But you may fail to notice any of these issues just by looking at the histogram.

Pushing and pulling is not a popular topic as everyone seems to use the terms correctly. More often than not, people use the terms incorrectly.

The result of accepting the camera meter as the final say in your shooting results in a much lower quality image. Even with the best TTL systems, properly mixing flash and ambient light sources can be unpredictable – especially if your subjects are not static.

(3) Balance different kinds of lighting on location…

(2) Avoid subject failure and expose for proper High Key and Low Key scenes...

(4) Avoid under and over exposures…

(1) Central multiple light sources, set light ratios and adjust tonal value…

In today’s digital age, although photographic imaging is much more advanced, obtaining professional quality results still require the best techniques and tools.

Although it may seem that push and pull has caused the digital darkness, correcting a dark exposure has its limits. All digital files may look fine to the naked eye, but there is no way to restore the detail lost in the underexposed image. Thus, this file should be interpreted as an example of why you should rely on your light meter instead of the histogram as compared to the f/stop metered value of the image.

Figures 16-18.

As an example, look at Figure 29. In this case the exposure was calculated by an in-camera meter which read the excessive amount of light reflecting off of the white background and counted the reflected light as a black shadow in the histogram. This averaging caused underexposure of the “fixed” image. For Figure 30 a handheld meter measured the incident light and suggested the exposure in the histogram as “subject failure.” Figure 31 shows the same improperly exposed scene “fixed” in the computer. For Figure 30 a handheld meter measured the incident light and suggested the exposure in the histogram as “subject failure.” Figure 31 shows the same improperly exposed scene ‘fixed’ in the computer. For Figure 30 a handheld meter measured the incident light and suggested the exposure in the histogram as “subject failure.” Figure 31 shows the same improperly exposed scene “fixed” in the computer.

Figures 20-27 show the subtle change in the histogram as compared to the f/stop metered value of the image.
Although everyone has their own preferences and shooting styles, photographic imaging can be optimized by understanding what a light meter and histogram can show you in the four scenarios presented here. Virtually every common shooting situation is represented, and each example shows proper exposure as determined by a light meter while including an interpretation of the accompanying histogram.

Avoid subject failure and expose for proper High Key and Low Key scenes...

The most common problem of both color and black & white cameras is subject failure. Cause the exposure system to be by and average the reflected color of the entire scene.

One method of achieving the above results would have been transformed while plating to make a color plate, and the exposure was a properly placed light meter trying to make a color plate. Proper exposure required you to consider the situation with the meter.

The histogram, while inadequate for determining proper exposure shows the bias in tonal distribution and give a good visual indication of what is wrong. That way the meter can be tied to specific situations.

Control multiple light sources, set light ratios and adjust tone level...

In today’s digital age, although the technology behind photography is much more complex, the basic principles of lighting, exposure, and color balance remain the same.

In today’s digital age, although the technology behind photography is much more complex, the basic principles of lighting, exposure, and color balance remain the same.

Avoid under and over exposures...

When working with more than one light source, remember that the histograms, while inadequate for determining proper exposure show the bias in tonal distribution and give a good visual indication of what is wrong. That way the meter can be tied to specific situations.

Want a histogram...

The histograms, while inadequate for determining proper exposure show the bias in tonal distribution and give a good visual indication of what is wrong. That way the meter can be tied to specific situations.

Expose and over exposures...

The histograms, while inadequate for determining proper exposure show the bias in tonal distribution and give a good visual indication of what is wrong. That way the meter can be tied to specific situations.

Centralize multiple light sources, set light ratios and adjust tone level...

In today’s digital age, although the technology behind photography is much more complex, the basic principles of lighting, exposure, and color balance remain the same.

In today’s digital age, although the technology behind photography is much more complex, the basic principles of lighting, exposure, and color balance remain the same.

Avoid under and over exposures...

When working with more than one light source, remember that the histograms, while inadequate for determining proper exposure show the bias in tonal distribution and give a good visual indication of what is wrong. That way the meter can be tied to specific situations.

Centralize multiple light sources, set light ratios and adjust tone level...

In today’s digital age, although the technology behind photography is much more complex, the basic principles of lighting, exposure, and color balance remain the same.

In today’s digital age, although the technology behind photography is much more complex, the basic principles of lighting, exposure, and color balance remain the same.
Avoid under and over exposure...
A common misconception is that an in-camera meter which does not read an average of the entire scene is useless in determining exposure. This is not true. A simple change in the light source can cause the meter to read a different amount of light. For example, changing the light source from a tungsten bulb to a fluorescent bulb can cause the meter to read a higher or lower amount of light. This is because the tungsten bulb emits a higher color temperature than the fluorescent bulb. However, this change in light source does not affect the exposure calculation because the exposure calculation is based on the light meter reading, not the light source. This is why it is important to always use a light meter that is calibrated for the type of light source being used.

Central multiple light sources, set light ratios and adjust tonal range...
Central multiple light sources require special attention to determine proper exposure. One method is to use an in-camera meter which reads an average of the entire scene. This method is not always accurate because the meter may not be able to detect the difference in light levels between the two light sources. Another method is to use a light meter that is calibrated for the type of light source being used. This method is more accurate because it takes into account the difference in light levels between the two light sources.

The best insurance for proper exposure is a good light meter – period!
In today’s digital age, although the technology behind photography is much more advanced and accurate, a good light meter is still essential in determining proper exposure. Although it may seem that any miracle can happen in the digital darkroom, correcting a bad exposure can be difficult. All of your digital camera’s correction tools can be used for the purpose of over-exposing a scene. However, if the exposure is too high, the digital camera’s correction tools may not be able to correct the over-exposure.

Although the histograms provide an interesting way to visualize the exposure, they cannot be used as a substitute for a light meter because they do not take into account the difference in light levels between the two light sources. A light meter is more accurate because it takes into account the difference in light levels between the two light sources.

Push/Pull Processing?
In addition, the time spent on the computer fixing a bad exposure will far exceed the time spent on the light meter. Although it may seem that any miracle can happen in the digital darkroom, correcting a bad exposure can be difficult. All of your digital camera’s correction tools can be used for the purpose of over-exposing a scene. However, if the exposure is too high, the digital camera’s correction tools may not be able to correct the over-exposure.

Although it may seem that any miracle can happen in the digital darkroom, correcting a bad exposure can be difficult. All of your digital camera’s correction tools can be used for the purpose of over-exposing a scene. However, if the exposure is too high, the digital camera’s correction tools may not be able to correct the over-exposure.

Do You Need a Light Meter?
Yes! While a histogram is the most convenient way to scan how the entire scene will reproduce, it really does not provide a complete view of the exposure. The light meter is still the best tool to determine the proper exposure. Although it may seem that any miracle can happen in the digital darkroom, correcting a bad exposure can be difficult. All of your digital camera’s correction tools can be used for the purpose of over-exposing a scene. However, if the exposure is too high, the digital camera’s correction tools may not be able to correct the over-exposure.

Digital capture has a dynamic range and latitude roughly comparable to traditional film. What this means is that if you try to simply expose for the highlights, the image will be underexposed in the shadow areas. This is because the dark areas of the scene will be saturated with too much light, while the highlights will be underexposed.

Digital capture also allows for push/pull processing, where the exposure can be adjusted to improve the overall contrast of the image. This is especially useful in situations where the light is too bright or too dark.

Although the histograms provide an interesting way to visualize the exposure, they cannot be used as a substitute for a light meter because they do not take into account the difference in light levels between the two light sources. A light meter is more accurate because it takes into account the difference in light levels between the two light sources.
CHALLENGE! Can you match each image to its Histogram?

1) Someone looks like based upon their fingerprint. Like a pilot’s instruments, a fingerprint reader can tell you much more than you might imagine.

2) A fingerprint is a key. It’s a chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras. Since fingerprints are as unique as the person to whom they belong, they are often used to identify individuals.

3) Sekonic L-358

When measuring the light with a Sekonic L-358, you can clearly see the proportion of light being measured.

4) Sekonic L-558R

This Sekonic L-558R has a built-in light meter. It is a system of professional photographic products which incorporates a compatible digital wireless radio system, eliminating the need for PC eyes and studio release cables.

WHAT IS A HISTOGRAM?

A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras. Since fingerprints are as unique as the person to whom they belong, they are often used to identify individuals.

Although some people think that there are good histograms and bad histograms, and that there is an ideal way to insure that your subject and scene are fully utilized correctly.

Since histograms are not fully understood by the average photographer, they are typically not used even when they are displayed correctly.

WHAT IS A HISTOGRAM?

A histogram is a great way to judge the overall exposure you make with respect to the full range of the scene. In other words, if the tonal distribution falls within the confines of the left and right sides of the histogram, you’re most likely going to have a printable image. And if the histogram is pushed up against either side you might want to consider if you have a scene that’s too bright or too dark.

A histogram is a system of professional photographic products which incorporates a compatible digital wireless radio system, eliminating the need for PC eyes and studio release cables. Sekonic Digital Wireless Light Meters

DIGGING DEEPER INTO HISTOGRAMS...

HOW THEY WORK TOGETHER

A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of engineers who were designing the first digital cameras. Since fingerprints are as unique as the person to whom they belong, they are often used to identify individuals.

In a system of professional photographic products which incorporates a compatible digital wireless radio system, eliminating the need for PC eyes and studio release cables.

WHAT IS A HISTOGRAM?

A histogram is a great way to judge the overall exposure you make with respect to the full range of the scene. In other words, if the tonal distribution falls within the confines of the left and right sides of the histogram, you’re most likely going to have a printable image. And if the histogram is pushed up against either side you might want to consider if you have a scene that’s too bright or too dark.

A histogram is a graph of accumulated data. The horizontal axis (camera or computer) places each part, or picture element (pixel) on that scale in position relative to 0 (Black) and 255 (White). Your image processing system or fully utilized correctly.

Since histograms are not fully understood by the average photographer, they are typically not used even when they are displayed correctly.

Although some people think that there are good histograms and bad histograms, and that there is an ideal way to insure that your subject and scene are fully utilized correctly.

Since histograms are not fully understood by the average photographer, they are typically not used even when they are displayed correctly.

Although some people think that there are good histograms and bad histograms, and that there is an ideal way to insure that your subject and scene are fully utilized correctly.
CHALLENGE! Can you match each image to its histogram?

DIGGING DEEPER INTO HISTOGRAMS...

A histogram is basically a bar chart used to statistical analysis and was initially applied to photography by the original group of inventors who were designing the first digital cameras. Since histograms are not typically produced by the average photographer, they are typically not used in everyday shooting.

Let’s take a look at Figure 1 for an explanation. Every image captured by a digital camera is broken down into a histogram with bins ranging from 0 to 255. Each bin represents a certain brightness level. Each pixel of a particular image is placed in the correct bin according to its brightness. Every time a pixel of a particular level is captured, it is stacked on top of other pixels of the same brightness to create a smooth gradient. The result is a graph of how and where the range of tones is recorded.

Using a light meter to determine your proper lighting and exposure, plus a histogram to see what the ratio brightness is at rest, the ideal way to ensure that your subject and scene can be reproduced with optimal results.

Although some people think that there are good histograms and bad histograms, and that there is an even better histogram, the truth is that there isn’t a perfect histogram. There are only histograms that are better for certain scenes. The ideal histogram depends on the scene and the purpose of the photograph. For example, a histogram that represents the tonal distribution of a landscape scene will be different from a histogram that represents a portrait or a still-life scene. An ideal histogram for a portrait scene might be a histogram that shows a smooth gradient, while an ideal histogram for a landscape scene might be a histogram that shows a more even distribution of tones.

So, what is a histogram? A histogram is a way to visualize how the light in a scene is distributed. It can be used to determine the exposure of a scene when using a light meter. A histogram is a tool that can be used to determine if a scene is properly exposed or if it needs to be adjusted.

What is a histogram?

A histogram is a graphical representation of the tonal values of a scene. It is a bar graph that shows the number of pixels at each brightness level. The vertical axis represents the number of pixels, and the horizontal axis represents the brightness levels.

The histogram is divided into two sections: the high-key and low-key sections. The high-key section represents the bright tones, and the low-key section represents the dark tones. The histogram is used to determine if a scene is properly exposed or if it needs to be adjusted.

High-key scenes are represented by a histogram that is skewed to the right, while low-key scenes are represented by a histogram that is skewed to the left. The ideal histogram is a histogram that is evenly distributed across the horizontal scale.

Now, let’s take a look at a few examples of histograms and see how they compare.

Example 1: High-key Scene

A high-key scene is one in which the light is evenly distributed across the horizontal scale. The histogram for a high-key scene will be evenly distributed across the entire range of brightness levels.

Example 2: Low-key Scene

A low-key scene is one in which the light is concentrated in the dark tones. The histogram for a low-key scene will be skewed to the left, indicating that the scene has low contrast.

Example 3: Balanced Scene

A balanced scene is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene will be evenly distributed across the entire range of brightness levels.

Example 4: Overexposed Scene

An overexposed scene is one in which the light is concentrated in the bright tones. The histogram for an overexposed scene will be skewed to the right, indicating that the scene has high contrast.

Example 5: Underexposed Scene

An underexposed scene is one in which the light is concentrated in the dark tones. The histogram for an underexposed scene will be skewed to the left, indicating that the scene has low contrast.

Example 6: Balanced Scene with Shadows

A balanced scene with shadows is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with shadows will be evenly distributed across the entire range of brightness levels, with a peak in the dark tones.

Example 7: Balanced Scene with Highlights

A balanced scene with highlights is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with highlights will be evenly distributed across the entire range of brightness levels, with a peak in the bright tones.

Example 8: Balanced Scene with Midtones

A balanced scene with midtones is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with midtones will be evenly distributed across the entire range of brightness levels, with peaks in the dark, mid, and bright tones.

Example 9: Balanced Scene with Highlights and Shadows

A balanced scene with highlights and shadows is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with highlights and shadows will be evenly distributed across the entire range of brightness levels, with peaks in the dark, mid, and bright tones and a peak in the shadows.

Example 10: Balanced Scene with Highlights, Midtones, and Shadows

A balanced scene with highlights, midtones, and shadows is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with highlights, midtones, and shadows will be evenly distributed across the entire range of brightness levels, with peaks in the dark, mid, and bright tones and a peak in the shadows.

Example 11: Balanced Scene with Highlights and Shadows in a Different Range

A balanced scene with highlights and shadows in a different range is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with highlights and shadows in a different range will be evenly distributed across the entire range of brightness levels, with peaks in the dark, mid, and bright tones and a peak in the shadows in a different range.

Example 12: Balanced Scene with Highlights, Midtones, and Shadows in a Different Range

A balanced scene with highlights, midtones, and shadows in a different range is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with highlights, midtones, and shadows in a different range will be evenly distributed across the entire range of brightness levels, with peaks in the dark, mid, and bright tones and a peak in the shadows in a different range.

Example 13: Balanced Scene with Highlights, Midtones, and Shadows in Multiple Ranges

A balanced scene with highlights, midtones, and shadows in multiple ranges is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with highlights, midtones, and shadows in multiple ranges will be evenly distributed across the entire range of brightness levels, with peaks in the dark, mid, and bright tones and a peak in the shadows in multiple ranges.

Example 14: Balanced Scene with Highlights, Midtones, and Shadows in Multiple Ranges and a Peak in the Shadows in a Different Range

A balanced scene with highlights, midtones, and shadows in multiple ranges and a peak in the shadows in a different range is one in which the light is evenly distributed across the entire range of brightness levels. The histogram for a balanced scene with highlights, midtones, and shadows in multiple ranges and a peak in the shadows in a different range will be evenly distributed across the entire range of brightness levels, with peaks in the dark, mid, and bright tones and a peak in the shadows in a different range.