Digital Thermometer with Thermistor and Arduino’

Introduction

What is Arduino?

Arduino (www.arduino.cc) is an open-source prototyping platform based on easy-to-use
hardware and software. Arduino boards are able to read inputs - light on a sensor, a finger on a
button, or a Twitter message - and turn it into an output - activating a motor, turning on an LED,
publishing something online. You can tell your board what to do by sending a set of instructions
to the microcontroller on the board. To do so you use the Arduino programming language, and
the Arduino Software (IDE)?, which is already installed on all the computers in the physics lab.

There are many types of Arduino boards. We will be using the “UNO”. The UNO has 14 digital
input/output pins (which can either provide or read voltages), 6 analog inputs (for reading
voltages). The DC Current per I/O Pin is 20mA , while DC Current for 3.3V Pin (which is often

used as a power source for your experiment) is 50mA . The “GND” pins represent the ground.
Details are listed at www.arduino.cc/en/Main/ArduinoBoardUno.

The custom program that you upload into the Arduino board is commonly referred to as a
“sketch”.

What is a Thermistor?

A thermistor stands for thermal resistor, whose resistance changes rapidly with temperature. By
monitoring the resistance of the thermistor, the temperature can be deduced. The thermistor we
will use is of the NTC (negative temperature coefficient) type, meaning its resistance decreases
with rising temperature.

Measuring Resistance

An Arduino board measures only voltage but not resistance. In other to determine the resistance
of the thermistor, therefore one has to use a R = 10kQ resistor in series with the thermistor to

build a voltage divider (see setup below). By measuring the voltage across the thermistor one
can then deduce the resistance.

— Rtherm[ﬂar R — Vee
Vthermistor R +RV€C =1 +R TV =R

thermistor

RI(Le——1)

4 thermistor

thermistor ~

thermistor thermistor

' This experiment and the codes are based on a tutorial on Adafruit
(https://learn.adafruit.com/thermistor/using-a-thermistor), many other electronic components and tutorials
are available on the site if you are interested in exploring more.

2 |DE stands for “integrated development environment”, it is the software you use to program the Arduino
board.



http://www.arduino.cc/
https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Main/ArduinoBoardUno
https://learn.adafruit.com/thermistor/using-a-thermistor

In our experiment below, we will use the “3V3” pin to provide the voltage for the voltage divider,
which means V.. =3.3V.

A further complication is that the Arduino board gives the voltage measurement as an integer
(ADC value) from 0 to 1023, scaled by the reference voltage V... In other words, the voltage of
the thermistor read by an Arduino input pin should be computed from the ADC value with

|4 = 4DCy ... Therefore, in terms of the ADC value, we have R = R/(102 — 1),

thermistor — 1023 thermistor ADC

AREF (Analog Reference) Pin

While the “5V” pin is supposed to provide a 5V voltage output, the actual voltage could be
“noisy” because it simply passes whatever voltage the Arduino board receives from the USB
cable without regulation. A more stable voltage output can be obtained by using the “3V3” pin,
which gives a voltage output of 3.3V . This can be further stabilized by connecting the “3V3” pin
to the “AREF” pin, which tells the Arduino board to set the reference level for analogy reading at
3.3V, so an ADC value of 1023 corresponds to a voltage reading of 3.3V .

Equipment

Arduino board

USB cable

Breadboard

Jumper wires

Multimeter

Thermistor

10kQ resistor

220Q resistor

LED (at least two different colors)

Caution

The thermistor’s plastic coating cannot withstand high temperature (even though the resistor
inside can), so keep the temperature you measure to below 80°C just to be safe.

Testing the Arduino Board

1. Connect the Arduino board to the computer with the USB cable (with no wires
connected).

2. Go to the “File” menu, then select “Examples->01 Basics->BIlink”. This will open the
example sketch, Blink.

3. Click the “Upload” button (looks like a right-pointing arrow). If the upload succeeds, you
should see the built-in LED (below pin 13) on the board blinking.



4. If it does not work, it is usually because the computer does not know which USB part is
connected to the Arduino. To fix it, click on “Tools->Serial Port”, and try the other
connections listed. If too many ports are listed, you can unplug the USB cable and see
which port disappeared from the list, which would be the port used by the Arduino.
Choose the port after replugging in the USB again, and try to upload the sketch again.

5. The current sketch has the LED turns on for 1 second and off for 1 second. Study the
sketch and modify it so that the LED turns on for 3 seconds and off for 0.5 second. The
Arduino programing language is very easy to learn and understand, all you need is
common sense.

Testing the Thermistor

e Connect the multimeter to the thermistor to monitor its resistance.
e Hold the thermistor between your fingers, you should see the resistance changes as it is
warmed by your body heat.

Setup

Figure 1: Connecting the thermistor with the breadboard using the 104Q resistor.

e e o 0 0
® e o 0 0
e & & 0 0
© o o o o

i

rxmm Arduino” oo

® e o 0 0
e & & 0 0
e & o o o
L2 N B
e & & 0 o
e & o 0 o
e e 0 0 0

* e e 0o 0
¢ o 8 o o
e e o o o
® e o 0o 0
e & & 0 0
e & o o o

fritzing



Procedure A

1. Connect the circuit in Figure 1.

2. Connect the Arduino board to the computer and open the Arduino IDE on the computer.
Make sure the correct serial port is chosen (see the earlier section on Testing the
Arduino Board).

3. Type in the Program 1 below. Typing instead of just copy and paste will help you
understand the codes better and are often recommended to programming beginners.

4. Upload the sketch by clicking the button with the right-pointing arrow.

5. Click on the magnifying glass button on the top right hand corner of the IDE, you should
see the temperature being updated once every second.

6. Test your thermometer on some hot and cold water over a range of temperature (do not
go above 80°C'!). Compare your Arduino measurement with a regular thermometer.

Make a table to compare the two.

Procedure B

Figure 2: The long leg of the LED is the anode and should be connected to the positive
terminal, while the short leg (the cathode) should go toward the ground (GND).

_|_

C ] .

I

1. Get two 220Q resistors and two LED lights (red and yellow, for example). The resistor
should always be connected in series with the LED to protect it from too large a current.

2. Study the “Blink” example on https://www.arduino.cc/en/Tutorial/Blink and see if you can
modify the codes so that it lights up the red LED when the temperature is above 60°C
and the yellow LED when the temperature is below 15°C . You will also need to use an

“if...else” statement, which is explained at the reference page at
https://www.arduino.cc/en/Reference/HomePage.
3. Test your new “temperature alert system” :)

Procedure C (Optional)

1. Study the example “LED Bar Graph” on https://www.arduino.cc/en/Tutorial/BarGraph.
2. See if you could modify your circuit and your codes so that the LED bar graph displays
the temperature.



https://www.arduino.cc/en/Tutorial/Blink
https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Tutorial/BarGraph

Codes

Program 1:

//To see the temperature, you will need to click on the "Serial
Monitor" button on the top right hand corner (which looks like a
magnifying glass) .

//Define the pin that reads the voltage between the thermistor and
the resistor.
#define PIN THERMISTOR AOQO

//Define a variable to hold the value of the resistance of our
external resistor.
const float RESISTANCE_EXTERNAL=IOOOO;

//The “setup” function will run only once in the beginning of the
sketch.
void setup (void) {

//This tells the Arduino board to be ready to communicate with the
computer.

Serial.begin (9600);

//Set the reference voltage level to that of the AREF pin, which is
connected to the 3.3V pin.

analogReference (EXTERNAL) ;

//The “loop” function will run repeatedly forever until power 1is
disconnected from the Arduino board.
void loop (void) {

//Declare the variables we want to use.

float ADC value;

float resistance thermistor;

float temperature;

//This reads the voltage from the thermistor pin, the values 1is in
the range of 0 to 1023
ADC value = analogRead(PIN THERMISTOR) ;

//Compute the resistance of the thermistor using the equation
derived in the Introduction section.



resistance thermistor = RESISTANCE EXTERNAL/ ((1023/ADC value) - 1);
temperature = temperature from resistance(resistance thermistor);

//Now display the results:
Serial.print ("ADC value: ");
Serial.println (ADC value);

Serial.print ("Thermistor resistance in Ohms: ");

Serial.println(resistance thermistor);

Serial.print ("Temperature in C: ");
Serial.println (temperature);

Serial.println(); //Print a blank line.

//Wait 1 second (1000ms) before repeating the loop again.
delay (1000) ;

float temperature from resistance(float resistance) {
const float T 0 = 25+273.15;
const float B 0 = 3950;
const float R 0 = 10000;

//Use the Steinhart-Hart equation to find the temperature from the

resistance.
return 1/((1/T 0) +(1/B 0)*log(resistance/R 0))-273.15;



