Lecture 7 - Potential Energy
There are two types of mechanical energy, kinetic energy and potential energy. For now we will focus on gravitational potential energy: $$ PE_g = mgh $$ The height \(h\) is measure from an arbitrary reference level (say the ground). The higher an object is, the more gravitational potential energy it has. Together with kinetic energy \(KE=\frac{1}{2}mv^2\) we can apply the law of conservation of energy to solve many problems. As with all other types of energy, its SI unit is \(J\).
When friction is absent, the total mechanical energy of an object is conserved, i.e. \(KE + PE = constant\). A more useful way to restate this is to say:
The potential energy of a pendulum is gravitational in nature, so it is still given by \(PE=mgh\). The only extra step that is neccessary here is a mathematical one: how to write \(h\) in terms of \(\theta\)?
The figure on the left shows the geometrical meaning of \(h\) for the pendulum. From the triangle, one could work out the side adjacent to \(\theta\) as \(L\cos\theta\). Since the length of the pendulum does not change, we have: $$ \begin{eqnarray} L&=& h + L\cos\theta \\ \Rightarrow h &=& L - L\cos\theta \\ &=& L(1 - \cos\theta) \\ \Rightarrow PE &=& mgh = mgL(1 - \cos\theta) \end{eqnarray} $$
Drag on the ball to change the length.
Drag on the bar to change the angle.
Click on the clock to reset the timer.
The mass of the object is fixed to be \(m = 1kg\).
The grey horizontal line represents the lowest level of the pendulum trajectory, used as a reference level for height measurement.
Use the clock to time 10 oscillations and deduce the period. Repeat for a different length and see how the period changes.
There are other types of potential energy. For exmample, when a spring is stretched (or compressed), the energy you spent pulling it is stored inside the spring as potential energy. When the spring is released, the energy could be turned into other forms of energy, such as kinetic energy.
The potential energy in a spring in given by the equation: $$ PE_{spring} = \frac{1}{2} k x^2 $$ where \(k\) [unit: \(N/m\)] is the spring constant, and \(x\) [unit: \(m\)] is the extension of the spring. Note that the energy is not dependent on the sign of \(x\).
A related equation, called Hooke's Law, which we will only use in later chapters, is the force from a spring: $$ F_{spring} = - kx $$ The equation shows the force from a spring is proportional to the extension \(x\). The negative sign in the fron means the force from the spring is always opposite in direction to the direction of \(x\): when the spring is pulled to the right of the equilibrium position, the spring will pulled left; when \(x\) is to the left of the equilibrium positionl, the spring will push to the right. The spring constant \(k\) is the "stiffness" of the spring, the stiffer it is, the more force it can generate.
Name | Symbol | Unit | Meaning |
---|---|---|---|
Energy | \(E\) | \( J\) | a conserved quantity in nature |
Kinetic energy | \(KE\) | \(J\) | energy of motion |
Potential energy | \(PE\) | \(J\) | an invisible form of energy |