
M230 L08.1 Smith Spring Feb-08

Math 230
Assembly Programming
(AKA Computer Organization)

Spring 2008

Adapted from slides developed for:

Mary J. Irwin PSU CSE331

Dave Patterson’s UCB CS152

MIPS Intro III – Branch Instructions

Feb 19, 2008

Lect 11

M230 L08.2 Smith Spring Feb-08

MIPS Instructions, so far

43

35

0 and
34

0 and
32

Op
Code

Memory($s2+100) = $s1sw $s1, 100($s2)store
word

$s1 = Memory($s2+100)lw $s1, 100($s2)load
word

Data

transfer

(I format)

$s1 = $s2 - $s3sub $s1, $s2, $s3subtract

$s1 = $s2 + $s3add $s1, $s2, $s3addArithmetic

(R format)

MeaningExampleInstrCategory

M230 L08.3 Smith Spring Feb-08

Review: MIPS Organization

Processor
Memory

32 bits

230

words

read/write
addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

ALU
32

32

32 0 1 2 3

7654

byte address
(big Endian)

� Arithmetic instructions – to/from the register file

� Load/store word and byte instructions – from/to memory

Fetch

DecodeExec

M230 L08.4 Smith Spring Feb-08

Assembling Code
� Remember the assembler code we compiled for the C

statement

A[8] = A[2] - b

lw $t0, 8($s3) #load A[2] into $t0

sub $t0, $t0, $s2 #subtract b from A[2]

sw $t0, 32($s3) #store result in A[8]

Assemble the MIPS code for these three instructions

M230 L08.4 Smith Spring Feb-08

Assembling Code
� Remember the assembler code we compiled for the C

statement

A[8] = A[2] - b

lw $t0, 8($s3) #load A[2] into $t0

sub $t0, $t0, $s2 #subtract b from A[2]

sw $t0, 32($s3) #store result in A[8]

Assemble the MIPS code for these three instructions

35lw 19 8 8

M230 L08.4 Smith Spring Feb-08

Assembling Code
� Remember the assembler code we compiled for the C

statement

A[8] = A[2] - b

lw $t0, 8($s3) #load A[2] into $t0

sub $t0, $t0, $s2 #subtract b from A[2]

sw $t0, 32($s3) #store result in A[8]

Assemble the MIPS code for these three instructions

35lw 19 8 8

0sub 8 18 8 0 34

M230 L08.4 Smith Spring Feb-08

Assembling Code
� Remember the assembler code we compiled for the C

statement

A[8] = A[2] - b

lw $t0, 8($s3) #load A[2] into $t0

sub $t0, $t0, $s2 #subtract b from A[2]

sw $t0, 32($s3) #store result in A[8]

Assemble the MIPS code for these three instructions

35lw 19 8 8

0sub 8 18 8 0 34

43sw 19 8 32

M230 L08.5 Smith Spring Feb-08

Review: MIPS Data Types

Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte

16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCII 7 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers: 2's complement

Floating Point

M230 L08.6 Smith Spring Feb-08

Beyond Numbers
� Most computers use 8-bit bytes to represent characters

with the American Std Code for Info Interchange (ASCII)

� So, we need instructions to move bytes around

|124l108L76<60,44FF12

{123k107K75;59+4311

z122j106J74:58*42LF10

y121i105I73957)41tab9

x120h104H72856(40bksp8

w119g103G71755‘397

ACK

EOT

Null

Char

15

6

5

4

3

2

1

0

ASCII

v118f102F70654&38

u117e101E69553%37

DEL

t

s

r

q

p

Char

127

116

115

114

113

112

ASCII

o111O79?63/47

d100D68452$36

c99C67351#35

b98B66250“34

a97A65149!33

`96@64048space32

CharASCIICharASCIICharASCIICharASCII

M230 L08.7 Smith Spring Feb-08

Loading and Storing Bytes

� MIPS provides special instructions to move bytes

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

� What 8 bits get loaded and stored?

� load byte places the byte from memory in the rightmost 8 bits of
the destination register

- what happens to the other bits in the register?

� store byte takes the byte from the rightmost 8 bits of a register
and writes it to a byte in memory

op rs rt 16 bit number

M230 L08.8 Smith Spring Feb-08

Example of Loading and Storing Bytes

� Given following code sequence and memory state
(contents are given in hexadecimal), what is the state
of the memory after executing the code?

add $s3, $zero, $zero

lb $t0, 1($s3)

sb $t0, 6($s3)

Memory

0 0 9 0 1 2 A 0

Data Word
Address (Decimal)

0

4

8

12

16

20

24

F F F F F F F F

0 1 0 0 0 4 0 2

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 � What value is left in $t0?

� What if the machine were little
Endian?

M230 L08.8 Smith Spring Feb-08

Example of Loading and Storing Bytes

� Given following code sequence and memory state
(contents are given in hexadecimal), what is the state
of the memory after executing the code?

add $s3, $zero, $zero

lb $t0, 1($s3)

sb $t0, 6($s3)

Memory

0 0 9 0 1 2 A 0

Data Word
Address (Decimal)

0

4

8

12

16

20

24

F F F F F F F F

0 1 0 0 0 4 0 2

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 � What value is left in $t0?

� What if the machine were little
Endian?

$t0 = 0x00000090

M230 L08.8 Smith Spring Feb-08

Example of Loading and Storing Bytes

� Given following code sequence and memory state
(contents are given in hexadecimal), what is the state
of the memory after executing the code?

add $s3, $zero, $zero

lb $t0, 1($s3)

sb $t0, 6($s3)

Memory

0 0 9 0 1 2 A 0

Data Word
Address (Decimal)

0

4

8

12

16

20

24

F F F F F F F F

0 1 0 0 0 4 0 2

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 � What value is left in $t0?

� What if the machine were little
Endian?

$t0 = 0x00000090

mem(4) = 0xFFFF90FF

M230 L08.8 Smith Spring Feb-08

Example of Loading and Storing Bytes

� Given following code sequence and memory state
(contents are given in hexadecimal), what is the state
of the memory after executing the code?

add $s3, $zero, $zero

lb $t0, 1($s3)

sb $t0, 6($s3)

Memory

0 0 9 0 1 2 A 0

Data Word
Address (Decimal)

0

4

8

12

16

20

24

F F F F F F F F

0 1 0 0 0 4 0 2

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 � What value is left in $t0?

� What if the machine were little
Endian?

$t0 = 0x00000090

mem(4) = 0xFFFF90FF

mem(4) = 0xFF12FFFF
$t0 = 0x00000012

M230 L08.9 Smith Spring Feb-08

MIPS Instructions, so far

Memory($s2+101) = $s1sb $s1, 101($s2)40store byte

$s1 = Memory($s2+101)lb $s1, 101($s2)32load byte

43

35

0 and 34

0 and 32

Op Code

Memory($s2+100) = $s1sw $s1, 100($s2)store word

$s1 = Memory($s2+100)lw $s1, 100($s2)load wordData

transfer

(I format)

$s1 = $s2 - $s3sub $s1, $s2, $s3subtract

$s1 = $s2 + $s3add $s1, $s2, $s3addArithmetic

(R format)

MeaningExampleInstrCategory

M230 L08.10 Smith Spring Feb-08

� Decision making instructions

� alter the control flow

� i.e., change the "next" instruction to be executed

� MIPS conditional branch instructions:

bne $s0, $s1, Label #go to Label if $s0≠$s1

beq $s0, $s1, Label #go to Label if $s0=$s1

� Example: if (i==j) h = i + j;

Instructions for Making Decisions

bne $s0, $s1, Lab1

add $s3, $s0, $s1

Lab1: ...

bne $s0, $s1, Lab1

add $s3, $s0, $s1

Lab1: ...

M230 L08.11 Smith Spring Feb-08

� Instructions:

� Machine Formats:

� How is the branch destination address specified?

Assembling Branches

op rs rt 16 bit number I format

5 16 17 ????

4 16 17 ????

bne $s0, $s1, Label #go to Label if $s0≠$s1

beq $s0, $s1, Label #go to Label if $s0=$s1

bne $s0, $s1, Label #go to Label if $s0≠$s1

beq $s0, $s1, Label #go to Label if $s0=$s1

M230 L08.12 Smith Spring Feb-08

Specifying Branch Destinations

bne $s0,$s1,Lab1

add $s3,$s0,$s1

...Lab1:

� Could specify the memory address - but that would
require a 32 bit field

M230 L08.12 Smith Spring Feb-08

Specifying Branch Destinations

bne $s0,$s1,Lab1

add $s3,$s0,$s1

...Lab1:

� Could specify the memory address - but that would
require a 32 bit field

M230 L08.12 Smith Spring Feb-08

Specifying Branch Destinations

bne $s0,$s1,Lab1

add $s3,$s0,$s1

...Lab1:

� Could specify the memory address - but that would
require a 32 bit field

� Could use a register (like lw and
sw) and add to it the 16-bit offset

� which register?

- Instruction Address Register
(PC = program counter)

- its use is automatically implied by
instruction

- PC gets updated (PC+4) during the
fetch cycle so that it holds the
address of the next instruction

� limits the branch distance to -215 to
+215-1 instructions from the
(instruction after the) branch
instruction, but

- most branches are local anyway
(principle of locality)

M230 L08.12 Smith Spring Feb-08

Specifying Branch Destinations

bne $s0,$s1,Lab1

add $s3,$s0,$s1

...Lab1:

� Could specify the memory address - but that would
require a 32 bit field

� Could use a register (like lw and
sw) and add to it the 16-bit offset

� which register?

- Instruction Address Register
(PC = program counter)

- its use is automatically implied by
instruction

- PC gets updated (PC+4) during the
fetch cycle so that it holds the
address of the next instruction

� limits the branch distance to -215 to
+215-1 instructions from the
(instruction after the) branch
instruction, but

- most branches are local anyway
(principle of locality)

PC →

M230 L08.13 Smith Spring Feb-08

Disassembling Branch Destinations
� The contents of the updated PC (PC+4) is added to the

low order 16 bits of the branch instruction which is
converted into a 32 bit value by

� concatenated two low-order zeros to create an 18 bit number

� sign-extending those 18 bits

� The result is written into the PC if the branch condition is
true prior to the next Fetch cycle

PC
Add

32

32 32

32

32

offset

16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

M230 L08.15 Smith Spring Feb-08

� Assembly code
bne $s0, $s1, Lab1

add $s3, $s0, $s1

Lab1: ...

� Machine Format of bne:

Assembling Branches Example

op rs rt 16 bit offset I format

5 16 17

M230 L08.15 Smith Spring Feb-08

� Assembly code
bne $s0, $s1, Lab1

add $s3, $s0, $s1

Lab1: ...

� Machine Format of bne:

Assembling Branches Example

op rs rt 16 bit offset I format

5 16 17 1

M230 L08.15 Smith Spring Feb-08

� Assembly code
bne $s0, $s1, Lab1

add $s3, $s0, $s1

Lab1: ...

� Machine Format of bne:

Assembling Branches Example

op rs rt 16 bit offset I format

5 16 17 1

� Remember

� After the bne instruction is fetched, the PC is updated to address
the add instruction (PC = PC + 4).

� Two low-order zeros are concatenated to the offset number and that
value, sign-extended, is added to the (updated) PC

M230 L08.16 Smith Spring Feb-08

MIPS Organization

Processor
Memory

32 bits

230

words

read/write
addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

PC

ALU

32 32

32

32

32

0 1 2 3

7654

byte address
(big Endian)

Fetch
PC = PC+4

DecodeExec

Add
32

32
4

Add
32

32
br offset

M230 L08.17 Smith Spring Feb-08

� MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

� Example: if (i!=j)
h=i+j;

else
h=i-j;

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Another Instruction for Changing Flow

Exit

i != j?

h=i+j h=i-j

(false)

i == j
(true)
i != j

M230 L08.18 Smith Spring Feb-08

� Instruction:
j label #go to label

� Machine Format:

� How is the jump destination address specified?

� As an absolute address formed by

- concatenating the upper 4 bits of the current PC (now PC+4) to the
26-bit address and

- concatenating 00 as the 2 low-order bits

Assembling Jumps

op 26-bit address J format

2 ????

M230 L08.19 Smith Spring Feb-08

Disassembling Jump Destinations

� The low order 26 bits of the jump instruction is converted
into a 32 bit jump instruction destination address by

� concatenated two low-order zeros to create a 28 bit (word)
address and

� concatenating the upper 4 bits of the current PC (now PC+4)

� to create a 32 bit instruction address that is placed into
the PC prior to the next Fetch cycle

PC
32 32

26

32

00

from the low order 26 bits of the jump instruction

M230 L08.21 Smith Spring Feb-08

� Assemble the MIPS machine code (in decimal is fine) for
the following code sequence. Assume that the address
of the beq instruction is 0x00400020 (hex address)

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Assembling Branches and Jumps

M230 L08.21 Smith Spring Feb-08

� Assemble the MIPS machine code (in decimal is fine) for
the following code sequence. Assume that the address
of the beq instruction is 0x00400020 (hex address)

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Assembling Branches and Jumps

0x00400020 4 16 17 2

M230 L08.21 Smith Spring Feb-08

� Assemble the MIPS machine code (in decimal is fine) for
the following code sequence. Assume that the address
of the beq instruction is 0x00400020 (hex address)

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Assembling Branches and Jumps

0x00400020 4 16 17 2

0x00400024 0 16 17 19 0 32

M230 L08.21 Smith Spring Feb-08

� Assemble the MIPS machine code (in decimal is fine) for
the following code sequence. Assume that the address
of the beq instruction is 0x00400020 (hex address)

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Assembling Branches and Jumps

0x00400020 4 16 17 2

0x00400024 0 16 17 19 0 32

0x00400028 2 0000 0100 0 ... 0 0011 002

M230 L08.21 Smith Spring Feb-08

� Assemble the MIPS machine code (in decimal is fine) for
the following code sequence. Assume that the address
of the beq instruction is 0x00400020 (hex address)

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Assembling Branches and Jumps

0x00400020 4 16 17 2

0x00400024 0 16 17 19 0 32

0x00400028 2 0000 0100 0 ... 0 0011 002
jmp dst = (0x0) 0x040003 002(002)

= 0x00400030

M230 L08.21 Smith Spring Feb-08

� Assemble the MIPS machine code (in decimal is fine) for
the following code sequence. Assume that the address
of the beq instruction is 0x00400020 (hex address)

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Assembling Branches and Jumps

0x00400020 4 16 17 2

0x00400024 0 16 17 19 0 32

0x00400028 2 0000 0100 0 ... 0 0011 002
jmp dst = (0x0) 0x040003 002(002)

= 0x00400030

M230 L08.21 Smith Spring Feb-08

� Assemble the MIPS machine code (in decimal is fine) for
the following code sequence. Assume that the address
of the beq instruction is 0x00400020 (hex address)

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Assembling Branches and Jumps

0x00400020 4 16 17 2

0x00400024 0 16 17 19 0 32

0x00400028 2 0000 0100 0 ... 0 0011 002
jmp dst = (0x0) 0x040003 002(002)

= 0x00400030

0x0040002c 0 16 17 19 0 34

M230 L08.21 Smith Spring Feb-08

� Assemble the MIPS machine code (in decimal is fine) for
the following code sequence. Assume that the address
of the beq instruction is 0x00400020 (hex address)

beq $s0, $s1, Lab1
add $s3, $s0, $s1
j Lab2

Lab1: sub $s3, $s0, $s1
Lab2: ...

Assembling Branches and Jumps

0x00400020 4 16 17 2

0x00400024 0 16 17 19 0 32

0x00400028 2 0000 0100 0 ... 0 0011 002
jmp dst = (0x0) 0x040003 002(002)

= 0x00400030

0x0040002c 0 16 17 19 0 34

0x00400030 ...

M230 L08.23 Smith Spring Feb-08

Compiling While Loops

� Compile the assembly code for the C while loop where
i is in $s0, j is in $s1, and k is in $s2

while (i!=k)
i=i+j;

M230 L08.23 Smith Spring Feb-08

Compiling While Loops

� Compile the assembly code for the C while loop where
i is in $s0, j is in $s1, and k is in $s2

while (i!=k)
i=i+j;

Loop: beq $s0, $s2, Exit
add $s0, $s0, $s1
j Loop

Exit: . . .

M230 L08.24 Smith Spring Feb-08

� We have beq, bne, but what about branch-if-less-than?

� New instruction:

slt $t0, $s0, $s1 # if $s0 < $s1

then

$t0 = 1

else

$t0 = 0

� Machine format:

2

More Instructions for Making Decisions

op rs rt rd funct

0 16 17 8 0 42 = 0x2a

M230 L08.26 Smith Spring Feb-08

Other Branch Instructions

� Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create all relative conditions

� less than blt $s1, $s2, Label

� less than or equal to ble $s1, $s2, Label

� greater than bgt $s1, $s2, Label

� great than or equal to bge $s1, $s2, Label

� As pseudo instructions - recognized (and expanded) by
the assembler

� The assembler needs a reserved register ($at)

� there are policy of use conventions for registers

M230 L08.26 Smith Spring Feb-08

Other Branch Instructions

� Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create all relative conditions

� less than blt $s1, $s2, Label

� less than or equal to ble $s1, $s2, Label

� greater than bgt $s1, $s2, Label

� great than or equal to bge $s1, $s2, Label

� As pseudo instructions - recognized (and expanded) by
the assembler

� The assembler needs a reserved register ($at)

� there are policy of use conventions for registers

slt $t0, $s1, $s2 #$t0 set to 1 if

bne $t0, $zero, Label # $s1 < $s2

M230 L08.27 Smith Spring Feb-08

� Most higher level languages have case or switch
statements allowing the code to select one of many
alternatives depending on a single value.

� Instruction:

jr $t1 #go to address in $t1

� Machine format:

2

Another Instruction for Changing Flow

op rs funct

0 9 0 0 0 8 = 0x08

M230 L08.28 Smith Spring Feb-08

Compiling a Case (Switch) Statement

switch (k) {

case 0: h=i+j; break; /*k=0*/

case 1: h=i+h; break; /*k=1*/

case 2: h=i-j; break; /*k=2*/

� Assuming three sequential words in memory
starting at the address in $t4 have the addresses
of the labels L0, L1, and L2 and k is in $s2

add $t1, $s2, $s2 #$t1 = 2*k

add $t1, $t1, $t1 #$t1 = 4*k

add $t1, $t1, $t4 #$t1 = addr of JT[k]

lw $t0, 0($t1) #$t0 = JT[k]

jr $t0 #jump based on $t0

L0: add $s3, $s0, $s1 #k=0 so h=i+j

j Exit

L1: add $s3, $s0, $s3 #k=1 so h=i+h

j Exit

L2: sub $s3, $s0, $s1 #k=2 so h=i-j

Exit: . . .

$t4→ L0

L1

L2

Memory

