M230 L10.1

Math 230
Assembly Programming
(AKA computer Organization)

Spring 2008

MIPS Intro Il
Lect 10
Feb 15, 2008

Adapted from slides developed for:
Mary J. Irwin PSU CSE331
Dave Patterson’s UCB CS152

Smith Spring 2008

MIPS Data Types
Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 Dbits is a byte
16 bits is a half-word
32 bits (4 bytes) is a word
64 bits is a double-word

Character:
ASCIl 7 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers: 2's complement

Floating Point

M230 L10.2 Smith Spring 2008

Review: MIPS R3000 Instruction Set Architecture

Q Instruction Categories Registers
e Load/Store
Computational RO - R31

[
e Jump and Branch
e Floating Point

- COprocessor

PC
e Memory Management Hi
e Special LO
O 3 Instruction Formats: all 32 bits wide
OP rs rt rd sa funct

OP s rt immediate

OP jump target

M230 L10.3 Smith Spring 2008

MIPS Instructions, so far

Category Instr Op Example Meaning
Code

Arithmetic add 0 and | add $si1, $s2, $s3 | $s1 = $s2 + $s3

32
R format
() subtract 0and |sub $s1, $s2, $s3 | $s1 = $s2 - $s3

34
Data load 35 Iw $s1, 100($s2) | $s1 = Memory($s2+100)
t ; word
ransfer

store 43 sw 3$s1,100($s2) | Memory($s2+100) = $s1

(I format) word

M230 L10.4

Smith Spring 2008

Processor — Memory Interconnections

0 Memory is viewed as a large, single-dimension array,
with an address

0 A memory address is an index into the array

A

read addr/

write addr

Processor ?
< read data Memory # of words?

write data >

v
< >

32 bits

M230 L10.6 Smith Spring 2008

Processor — Memory Interconnections

0 Memory is viewed as a large, single-dimension array,
with an address

0 A memory address is an index into the array

A

read addr/ 32

write addr /

Processor ?
< read data Memory # of words?

write data >

v
< >

32 bits

M230 L10.6 Smith Spring 2008

Processor — Memory Interconnections

0 Memory is viewed as a large, single-dimension array,
with an address

0 A memory address is an index into the array

A
read addr/ 32
write addr /
Processor ?
< read data 32 Memory # of words?
/
write data >
v
< >

32 bits

M230 L10.6 Smith Spring 2008

Processor — Memory Interconnections

0 Memory is viewed as a large, single-dimension array,
with an address

0 A memory address is an index into the array

A
read addr/ 32
write addr /
Processor ?
< read data 32 Memory # of words?
/
}%2wr|te data >
v
< >

32 bits

M230 L10.6 Smith Spring 2008

Processor — Memory Interconnections

0 Memory is viewed as a large, single-dimension array,
with an address

0 A memory address is an index into the array

Processor

read addr/ 32

write addr /

read data 32

< 7

}%2wr|te data >

M230 L10.6

Memory

32 bits

? 232 —230words
of words?

Smith Spring 2008

Review: Naming Conventions for Registers

0 §zero constant 0 (Hdware) | || 16 $s0 callee saves
2 $v0 expression evaluation & 23 $s7
3 $vi function results 24 $t8 temporary (cont’d)
4 $a0 arguments 25 519
7 $a3 28 $gp pointer to global area
8 $t0 temporary: caller saves 29 $sp stack pointer
(callee can clobber) 30 $fp frame pointer
15§17 31 $ra return address (Hdware

M230 L10.7 Smith Spring 2008

Byte Addresses

0 Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

0O Therefore, the memory address of a word must be a
multiple of 4 (alignment restriction)

0 Big Endian: leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Q Little Endian: rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

M230 L10.8 Smith Spring 2008

M230 L10.9 Smith Spring 2008

Addressing Objects: Endianess and Alighment

Q Big Endian: leftmost byte is word address
Q Little Endian: rightmost byte is word address
msb Isb
0 1 2 3
Aligned

Alignment restriction: requires that
objects fall on address that is multiple Not
of their size. Aligned

M230 L10.11 Smith Spring 2008

Addressing Objects: Endianess and Alighment

Q Big Endian: leftmost byte is word address
Q Little Endian: rightmost byte is word address
little endian byte 0
3 2 1 0
msb Isb
0 1 2 3
Aligned

Alignment restriction: requires that
objects fall on address that is multiple Not
of their size. Aligned

M230 L10.11 Smith Spring 2008

Addressing Objects: Endianess and Alighment

Q Big Endian: leftmost byte is word address
Q Little Endian: rightmost byte is word address
little endian byte 0
3 2 1 0
msb Isb
0 1 2 3
big endian byte 0
7 Y 0 1 2 3
Aligned

Alignment restriction: requires that
objects fall on address that is multiple Not
of their size. Aligned

M230 L10.11 Smith Spring 2008

Addressing Objects: Endianess and Alighment

Q Big Endian: leftmost byte is word address
Q Little Endian: rightmost byte is word address
little endian byte 0
3 2 1 0
msb Isb
0 1 2 3
big endian byte 0
7 Y 0 1 2 3
Aligned

Alignment restriction: requires that
objects fall on address that is multiple Not
of their size. Aligned

M230 L10.11 Smith Spring 2008

MIPS Memory Addressing
0 The memory address is formed by summing the constant

portion of the instruction and the contents of the second
(base) register

$s3 holds 8 Memory 0110 24
..0101 20
..1100 16
..0001 12
..0010 8
..1000 4
...0100 0
Data Word Address

1w St0, 4(S$Ss3) #what? is loaded into S$tO
SW St0, 8($s3) #St0 is stored where?

M230 L10.14 Smith Spring 2008

MIPS Memory Addressing
0 The memory address is formed by summing the constant

portion of the instruction and the contents of the second
(base) register

$s3 holds 8 Memory 0110 24
..0101 20
..1100 16
..0001 12
..0010 8
..1000 4
...0100 0
Data Word Address
... 0001

1w St0, 4(S$Ss3) #what? is loaded into S$tO
SW St0, 8($s3) #St0 is stored where?

M230 L10.14 Smith Spring 2008

MIPS Memory Addressing
0 The memory address is formed by summing the constant

portion of the instruction and the contents of the second
(base) register

$s3 holds 8 Memory 0110 24
..0101 20
..1100 16
..0001 12
..0010 8
..1000 4
...0100 0
Data Word Address
... 0001

1w St0, 4(S$s3) #what? i1is loaded into S$tO0

SW St0, 8($s3) #St0 is stored where?
In location 16

M230 L10.14 Smith Spring 2008

MIPS Memory Addressing

0 The memory address is formed by summing the constant
portion of the instruction and the contents of the second
(base) register

$s3 holds 8 Memory ...0110 | 24
...0101 20
...1400 16
___0001/ ...0001 12
...0010 8
...1000 4
...0100 0
Data Word Address
... 0001

1w St0, 4(S$s3) #what? i1is loaded into S$tO0

SW St0, 8($s3) #St0 is stored where?
In location 16

M230 L10.14 Smith Spring 2008

Compiling with Loads and Stores

0 Assuming variable b is stored in $s2 and that the base
address of array A is in $s3, what is the MIPS
assembly code for the C statement

A[38] = A[2] - Db

A[3] le— $53+12
A[2] le— $s3+8
A[1] le— $s3+4
A[0] le— $s3

M230 L10.16 Smith Spring 2008

Compiling with Loads and Stores

0 Assuming variable b is stored in $s2 and that the base
address of array A is in $s3, what is the MIPS
assembly code for the C statement

A[38] = A[2] - Db

A[3] le— $53+12
A[2] le— $s3+8
A[1] le— $s3+4
A[0] le— $s3

1w $t0, 8(S$s3)

sub $t0, $t0, $s2

SW St0, 32(Ss3)

M230 L10.16 Smith Spring 2008

Compiling with a Variable Array Index

0 Assuming A is an array of 50 elements whose base is
In register $s4, and variables b, ¢, and i are in $s1,
Ss2, and $s3, respectively, what is the MIPS
assembly code for the C statement

c = A[1] - Db

add stl, S$s3, $s3 #farray index i is in $s3

add stl, $tl, stil ftemp reg $tl holds 4*i

M230 L10.18 Smith Spring 2008

Compiling with a Variable Array Index

0 Assuming A is an array of 50 elements whose base is
In register $s4, and variables b, ¢, and i are in $s1,
Ss2, and $s3, respectively, what is the MIPS

assembly code for the C statement

c = A[1] - Db

add stl, S$s3, $s3 #farray index i is in $s3
add stl, St1, stl #ftemp reg S$tl holds 4*i
add stl, Stl, $s4 #addr of A[i]

1w st0, 0(stl)

sub Ss2, S$t0, S$sl

M230 L10.18 Smith Spring 2008

Review: Unsigned Binary Representation

Hex Binary | Decimal
0x00000000 | 0...0000 0
0x00000001 0...0001 1
0x00000002 | 0...0010 2
0x00000003 | 0...0011 3
0x00000004 | 0...0100 4
0x00000005 | 0...0101 3
0x00000006 | 0...0110 6
0x00000007 | 0...0111 7
0x00000008 | 0...1000 8
0x00000009 | 0...1001 9
OxFFFFFFFC | 1...1100 232 _ 4
OxFFFFFFFD | 1...1101 2%2 -3
OxFFFFFFFE | 1...1110 232 _ D
OxFFFFFFFF | 1...1111 232 - 1

M230 L10.19

231 230 20 23 22 21 20 it weight

31 30 29 3 2 1 0 bitposition

1 1 1 111 1 bit

4L
1000

L

oo0oo0o0 - 1

232 - 1

Smith Spring 2008

Review: Signed Binary Representation

2’sc binary decimal
23 = 1000 -8
-(28-1) = 1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
23-1= 0111 7

M230 L10.20 Smith Spring 2008

Review: Signed Binary Representation

2’sc binary decimal
23 = 1000 -8
(28-1) = 1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1
0000 0
1010 0001 1
complement all the bits 0010 2
0011 3
\ 0100 4
- 0101 5
0110 6
23-1= 0111 7

M230 L10.20 Smith Spring 2008

Review: Signed Binary Representation

2’sc binary decimal
23 = [1000
(23-1)=| 1001
1010

L1011
/ 1100
1101
1110
and add a 1 1111

1010 0010
0001

complement all the bits 0010

0011
\ 0100
- 0101 D

0110
28-1=| 0111

M230 L10.20 Smith Spring 2008

co

1011

Njola|dlw|d2|loldlplolaldlelw

Machine Language - Arithmetic Instruction

Q Instructions, like registers and words of data, are also
32 bits long

e Example: add $St0, $sl, Ss2
e registers have numbers $t0=$8, $s1=%$17, $s2=518

2 Instruction Format:

op rs rt rd shamt funct

000000] 10001 | 10010 | 01000 | 00000 | 100000

Can you guess what the field names stand for?

M230 L10.22 Smith Spring 2008

Machine Language - Arithmetic Instruction

Q Instructions, like registers and words of data, are also
32 bits long

e Example: Cadd>st0, $sl, $s2
e registers have numbers ~5$t0=$8, $s1=$17, $s52=5$18

QO Instruction Format:

x
o | rs rt rd | shamt | funct

000000] 10001 | 10010 | 01000 | 00000 | 100000

Can you guess what the field names stand for?

M230 L10.22 Smith Spring 2008

Machine Language - Arithmetic Instruction

Q Instructions, like registers and words of data, are also
32 bits long

e Example: Ssly $s2
e registers have numbers St 0=%$8 s1=%517, $s2=518

QO Instruction Format:

of” |

A N

A
rt rd shamt funct

000000] 10001 | 10010 | 01000 | 00000 | 100000

Can you guess what the field names stand for?

M230 L10.22 Smith Spring 2008

Machine Language - Arithmetic Instruction

Q Instructions, like registers and words of data, are also
32 bits long

e Example:

@ n
Iy

A
rt rd shamt funct

of” |

000000] 10001 | 10010 | 01000 | 00000 | 100000

Can you guess what the field names stand for?

M230 L10.22 Smith Spring 2008

Machine Language - Arithmetic Instruction

Q Instructions, like registers and words of data, are also
32 bits long

e Example:

@ n
Iy

A
rt rd shamt funct

of” |

000000] 10001 | 10010 | 01000 | 00000 | 100000

Can you guess what the field names stand for?

M230 L10.22 Smith Spring 2008

MIPS Instruction Fields

op

rs

rt

rd

shamt

funct

Qop
ars
art
ard

a shamt

Q funct

M230 L10.24

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

= 32 bits

Smith Spring 2008

MIPS Instruction Fields

op

rs

rt

rd

shamt

funct

Qop
ars
art
ard

a shamt

Q funct

M230 L10.24

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

= 32 bits

opcode indicating operation to be performed

Smith Spring 2008

MIPS Instruction Fields

op

rs

rt

rd

shamt

funct

Qop
ars
art
ard

a shamt

Q funct

M230 L10.24

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

= 32 bits

opcode indicating operation to be performed

address of the first register source operand

Smith Spring 2008

MIPS Instruction Fields

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

a op opcode indicating operation to be performed
ars address of the first register source operand
Qrt address of the second register source operand
ard

a shamt

Q funct

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

a op opcode indicating operation to be performed

ars address of the first register source operand
Qrt address of the second register source operand

ard the register destination address
a shamt

Q funct

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

a op opcode indicating operation to be performed

ars address of the first register source operand
Qrt address of the second register source operand

ard the register destination address

Q shamt shift amount (for shift instructions)

Q funct

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

a op opcode indicating operation to be performed

ars address of the first register source operand
Qrt address of the second register source operand

ard the register destination address

Q shamt shift amount (for shift instructions)

a funct function code that selects the specific variant of the
operation specified in the opcode field

M230 L10.24 Smith Spring 2008

Machine Language - Load Instruction

2 Consider the load-word and store-word instructions,
e What would the reqgularity principle have us do?
e New principle: Good design demands a compromise

2 Introduce a new type of instruction format
e |-type for data transfer instructions
e previous format was R-type for register

0 Example: 1w $t0, 24 ($s2)

op rs rt 16 bit number
Il
35 18 8 24
Il
100011 | 10010 | 01000 0000000000011000

Where's the compromise?

M230 L10.26 Smith Spring 2008

Machine Language - Load Instruction

2 Consider the load-word and store-word instructions,
e What would the reqgularity principle have us do?
e New principle: Good design demands a compromise

2 Introduce a new type of instruction format
e |-type for data transfer instructions
e previous format was R-type for register

0 Example:d/iD$to, 24 ($s2)

op / rs rt 16 bit number
/ st
35 18 8 24
1
100011 | 10010 | 01000 0000000000011000

Where's the compromise?

M230 L10.26 Smith Spring 2008

Machine Language - Load Instruction

2 Consider the load-word and store-word instructions,
e What would the reqgularity principle have us do?
e New principle: Good design demands a compromise

2 Introduce a new type of instruction format
e |-type for data transfer instructions
e previous format was R-type for register

0 Example:d/iD$to, 24)
op / rs Lt/ 16 bit number
/ sl
x
35 18 8 24
L

100011 | 10010 | 01000 0000000000011000

Where's the compromise?

M230 L10.26 Smith Spring 2008

Machine Language - Load Instruction

2 Consider the load-word and store-word instructions,
e What would the reqgularity principle have us do?
e New principle: Good design demands a compromise

2 Introduce a new type of instruction format
e |-type for data transfer instructions
e previous format was R-type for register

0 Example:d/iDSftf\(D 24)

op / rs \Lt/ 16 bit number
I

LN

35 18 8 24
L1

100011 | 10010 | 01000 0000000000011000

Where's the compromise?

M230 L10.26 Smith Spring 2008

Machine Language - Load Instruction

2 Consider the load-word and store-word instructions,
e What would the reqgularity principle have us do?
e New principle: Good design demands a compromise

2 Introduce a new type of instruction format
e |-type for data transfer instructions
e previous format was R-type for register

a Example:)

op / rs \Lt/ 16 bit number
I

LN ,.

35 18 8 24
L1

100011 | 10010 | 01000 0000000000011000

Where's the compromise?

M230 L10.26 Smith Spring 2008

Memory Address Location

0 Example: 1w $tO,

24, + $s2 =

Note that the offset can
be positive or negative

M230 L10.28

24 ($s2)
Memory
Oxffffffff
0x00000002
Sg2—» 0x12004094
0x0000000c
0x00000008
0x00000004
0x00000000
data

word address (hex)

Smith Spring 2008

Memory Address Location

0 Example: 1w $t0, 24($s2)

Memory

Oxffffffff

24, + $s2 =
0x00000002
... 1001 0100
+...0001 1000 Ss2—> 0x12004094
... 10101100 =
0x120040ac

0x0000000
Note that the offset can oiooooooog
be positive or negative 990000

data word address (hex)

M230 L10.28 Smith Spring 2008

Machine Language - Store Instruction

QO Example: sw $t0, 24($s2)

op rs 1 16 bit number
1
43 18 8 24
1
101011 [10010 | 01000 0000000000011000

0 A 16-bit address means access is limited to memory

locations within a region of £213 or 8,192 words (£2'° or
32,768 bytes) of the address in the base register $s2

M230 L10.30

Smith Spring 2008

Machine Language - Store Instruction

| Exampleﬁ@ s5t0,

(Ss2)

op rs rt 16 bit number
/ o
43 18 8 24
L1
101011 | 10010 [01000 0000000000011000

0 A 16-bit address means access is limited to memory

locations within a region of £213 or 8,192 words (£2'° or
32,768 bytes) of the address in the base register $s2

M230 L10.30

Smith Spring 2008

Machine Language - Store Instruction

O Example: s5t0, 24?))
op / rs /t/ 16 bit number
[. o
43 18 8 24
1
101011 [10010 | 01000 0000000000011000

0 A 16-bit address means access is limited to memory

locations within a region of £213 or 8,192 words (£2'° or
32,768 bytes) of the address in the base register $s2

M230 L10.30

Smith Spring 2008

Machine Language - Store Instruction

0 Exampleﬁ@@% 24@

op 16 bit number

/\ o
43 18 24
L1

101011 | 10010 | 01000 0000000000011000

0 A 16-bit address means access is limited to memory

locations within a region of £213 or 8,192 words (£2'° or
32,768 bytes) of the address in the base register $s2

M230 L10.30 Smith Spring 2008

Machine Language - Store Instruction

0 Example: ,Q@))
[1 s D st

op 16 bit number

(ERVATEN

43 1

24

L1

101011 | 10010 | 01000 0000000000011000

0 A 16-bit address means access is limited to memory

locations within a region of £213 or 8,192 words (£2'° or
32,768 bytes) of the address in the base register $s2

M230 L10.30 Smith Spring 2008

Review: MIPS Organization

0 Arithmetic instructions — to/from the register file

0 Load/store word and byte instructions — from/to memory

Memory
Processor
Register File
A d/wri
src1 addr-2» srci reaq/write
S o data addr
src2 addr—4» 30 7~ >
dst add 5 registers 32
sta r75"($zero - $ra) e
write datag? v Z?data <read daté/
“320bits * 32
write data
32
32 I
32 4 | 5|6 |7
32 0% 1 [2|3
- :
32 bits

M230 L10.31

byte address

(big Endian)

1..1100 %

..1100
..1000
..0100
..0000

CO00o

230
words

v

t word address
(binary)

Smith Spring 2008

