
M230 L10.1 Smith Spring 2008

Math 230
Assembly Programming
(AKA Computer Organization)

Spring 2008

Adapted from slides developed for:

Mary J. Irwin PSU CSE331

Dave Patterson’s UCB CS152

MIPS Intro II

Lect 10

Feb 15, 2008

M230 L10.2 Smith Spring 2008

MIPS Data Types

Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte

16 bits is a half-word
32 bits (4 bytes) is a word
64 bits is a double-word

Character:
ASCII 7 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers: 2's complement

Floating Point

M230 L10.3 Smith Spring 2008

Review: MIPS R3000 Instruction Set Architecture

� Instruction Categories

� Load/Store

� Computational

� Jump and Branch

� Floating Point

- coprocessor

� Memory Management

� Special

R0 - R31

PC

HI

LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

� 3 Instruction Formats: all 32 bits wide

Registers

M230 L10.4 Smith Spring 2008

MIPS Instructions, so far

43

35

0 and
34

0 and
32

Op
Code

Memory($s2+100) = $s1sw $s1, 100($s2)store
word

$s1 = Memory($s2+100)lw $s1, 100($s2)load
word

Data

transfer

(I format)

$s1 = $s2 - $s3sub $s1, $s2, $s3subtract

$s1 = $s2 + $s3add $s1, $s2, $s3addArithmetic

(R format)

MeaningExampleInstrCategory

M230 L10.6 Smith Spring 2008

� Memory is viewed as a large, single-dimension array,
with an address

� A memory address is an index into the array

Processor – Memory Interconnections

Processor
Memory

32 bits

?
of words?

read addr/
write addr

read data

write data

M230 L10.6 Smith Spring 2008

� Memory is viewed as a large, single-dimension array,
with an address

� A memory address is an index into the array

Processor – Memory Interconnections

Processor
Memory

32 bits

?
of words?

read addr/
write addr

read data

write data

32

M230 L10.6 Smith Spring 2008

� Memory is viewed as a large, single-dimension array,
with an address

� A memory address is an index into the array

Processor – Memory Interconnections

Processor
Memory

32 bits

?
of words?

read addr/
write addr

read data

write data

32

32

M230 L10.6 Smith Spring 2008

� Memory is viewed as a large, single-dimension array,
with an address

� A memory address is an index into the array

Processor – Memory Interconnections

Processor
Memory

32 bits

?
of words?

read addr/
write addr

read data

write data

32

32

32

M230 L10.6 Smith Spring 2008

� Memory is viewed as a large, single-dimension array,
with an address

� A memory address is an index into the array

Processor – Memory Interconnections

Processor
Memory

32 bits

?
of words?

read addr/
write addr

read data

write data

32

32

32

232 → 230 words

M230 L10.7 Smith Spring 2008

0 $zero constant 0 (Hdware)

1 $at reserved for assembler

2 $v0 expression evaluation &

3 $v1 function results

4 $a0 arguments

5 $a1

6 $a2

7 $a3

8 $t0 temporary: caller saves

. . . (callee can clobber)

15 $t7

Review: Naming Conventions for Registers

16 $s0 callee saves

. . . (caller can clobber)

23 $s7

24 $t8 temporary (cont’d)

25 $t9

26 $k0 reserved for OS kernel

27 $k1

28 $gp pointer to global area

29 $sp stack pointer

30 $fp frame pointer

31 $ra return address (Hdware)

M230 L10.8 Smith Spring 2008

Byte Addresses

� Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

� Therefore, the memory address of a word must be a
multiple of 4 (alignment restriction)

� Big Endian: leftmost byte is word address
IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

� Little Endian: rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

M230 L10.9 Smith Spring 2008

M230 L10.11 Smith Spring 2008

Addressing Objects: Endianess and Alignment

� Big Endian: leftmost byte is word address

� Little Endian: rightmost byte is word address

msb lsb

Alignment restriction: requires that
objects fall on address that is multiple
of their size.

0 1 2 3

Aligned

Not
Aligned

M230 L10.11 Smith Spring 2008

Addressing Objects: Endianess and Alignment

� Big Endian: leftmost byte is word address

� Little Endian: rightmost byte is word address

msb lsb

Alignment restriction: requires that
objects fall on address that is multiple
of their size.

0 1 2 3

Aligned

Not
Aligned

3 2 1 0

little endian byte 0

M230 L10.11 Smith Spring 2008

Addressing Objects: Endianess and Alignment

� Big Endian: leftmost byte is word address

� Little Endian: rightmost byte is word address

msb lsb

Alignment restriction: requires that
objects fall on address that is multiple
of their size.

0 1 2 3

Aligned

Not
Aligned

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

M230 L10.11 Smith Spring 2008

Addressing Objects: Endianess and Alignment

� Big Endian: leftmost byte is word address

� Little Endian: rightmost byte is word address

msb lsb

Alignment restriction: requires that
objects fall on address that is multiple
of their size.

0 1 2 3

Aligned

Not
Aligned

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0
0 1 2 3

M230 L10.14 Smith Spring 2008

MIPS Memory Addressing
� The memory address is formed by summing the constant

portion of the instruction and the contents of the second
(base) register

lw $t0, 4($s3) #what? is loaded into $t0

sw $t0, 8($s3) #$t0 is stored where?

Memory

. . . 0 1 0 0

Data Word Address

0

4

8

12

16

20

24

. . . 1 0 0 0

. . . 0 0 1 0

. . . 0 0 0 1

. . . 1 1 0 0

. . . 0 1 0 1

. . . 0 1 1 0
$s3 holds 8

M230 L10.14 Smith Spring 2008

MIPS Memory Addressing
� The memory address is formed by summing the constant

portion of the instruction and the contents of the second
(base) register

lw $t0, 4($s3) #what? is loaded into $t0

sw $t0, 8($s3) #$t0 is stored where?

Memory

. . . 0 1 0 0

Data Word Address

0

4

8

12

16

20

24

. . . 1 0 0 0

. . . 0 0 1 0

. . . 0 0 0 1

. . . 1 1 0 0

. . . 0 1 0 1

. . . 0 1 1 0
$s3 holds 8

. . . 0001

M230 L10.14 Smith Spring 2008

MIPS Memory Addressing
� The memory address is formed by summing the constant

portion of the instruction and the contents of the second
(base) register

lw $t0, 4($s3) #what? is loaded into $t0

sw $t0, 8($s3) #$t0 is stored where?

Memory

. . . 0 1 0 0

Data Word Address

0

4

8

12

16

20

24

. . . 1 0 0 0

. . . 0 0 1 0

. . . 0 0 0 1

. . . 1 1 0 0

. . . 0 1 0 1

. . . 0 1 1 0
$s3 holds 8

. . . 0001

in location 16

M230 L10.14 Smith Spring 2008

MIPS Memory Addressing
� The memory address is formed by summing the constant

portion of the instruction and the contents of the second
(base) register

lw $t0, 4($s3) #what? is loaded into $t0

sw $t0, 8($s3) #$t0 is stored where?

Memory

. . . 0 1 0 0

Data Word Address

0

4

8

12

16

20

24

. . . 1 0 0 0

. . . 0 0 1 0

. . . 0 0 0 1

. . . 1 1 0 0

. . . 0 1 0 1

. . . 0 1 1 0
$s3 holds 8

. . . 0001

in location 16

. . . 0001

M230 L10.16 Smith Spring 2008

Compiling with Loads and Stores

� Assuming variable b is stored in $s2 and that the base
address of array A is in $s3, what is the MIPS
assembly code for the C statement

A[8] = A[2] - b

$s3

$s3+4

$s3+8

$s3+12

. . .

A[2]

A[3]

. . .

A[1]

A[0]

M230 L10.16 Smith Spring 2008

Compiling with Loads and Stores

� Assuming variable b is stored in $s2 and that the base
address of array A is in $s3, what is the MIPS
assembly code for the C statement

A[8] = A[2] - b

$s3

$s3+4

$s3+8

$s3+12

. . .

A[2]

A[3]

. . .

A[1]

A[0]
lw $t0, 8($s3)

sub $t0, $t0, $s2

sw $t0, 32($s3)

M230 L10.18 Smith Spring 2008

Compiling with a Variable Array Index

� Assuming A is an array of 50 elements whose base is
in register $s4, and variables b, c, and i are in $s1,
$s2, and $s3, respectively, what is the MIPS
assembly code for the C statement

c = A[i] - b

add $t1, $s3, $s3 #array index i is in $s3

add $t1, $t1, $t1 #temp reg $t1 holds 4*i

M230 L10.18 Smith Spring 2008

Compiling with a Variable Array Index

� Assuming A is an array of 50 elements whose base is
in register $s4, and variables b, c, and i are in $s1,
$s2, and $s3, respectively, what is the MIPS
assembly code for the C statement

c = A[i] - b

add $t1, $s3, $s3 #array index i is in $s3

add $t1, $t1, $t1 #temp reg $t1 holds 4*i

add $t1, $t1, $s4 #addr of A[i]

lw $t0, 0($t1)

sub $s2, $t0, $s1

M230 L10.19 Smith Spring 2008

Review: Unsigned Binary Representation

0xFFFFFFFF

0xFFFFFFFE

0xFFFFFFFD

0xFFFFFFFC

0x00000009

0x00000008

0x00000007

0x00000006

0x00000005

0x00000004

0x00000003

0x00000002

0x00000001

0x00000000

Hex

1…1111

1…1110

1…1101

1…1100

…

90…1001

80…1000

70…0111

60…0110

50…0101

40…0100

30…0011

20…0010

10…0001

00…0000

DecimalBinary

232 - 1

232 - 2

232 - 3

232 - 4

232 - 1

1 1 1 . . . 1 1 1 1 bit

31 30 29 . . . 3 2 1 0 bit position

231 230 229 . . . 23 22 21 20 bit weight

1 0 0 0 . . . 0 0 0 0 - 1

M230 L10.20 Smith Spring 2008

Review: Signed Binary Representation

-81000

-71001

70111

60110

50101

40100

30011

20010

10001

00000

-11111

-21110

-31101

-41100

-51011

-61010

decimal2’sc binary

23 - 1 =

-(23 - 1) =

-23 =

M230 L10.20 Smith Spring 2008

Review: Signed Binary Representation

-81000

-71001

70111

60110

50101

40100

30011

20010

10001

00000

-11111

-21110

-31101

-41100

-51011

-61010

decimal2’sc binary

23 - 1 =

-(23 - 1) =

-23 =

1010

complement all the bits

M230 L10.20 Smith Spring 2008

Review: Signed Binary Representation

-81000

-71001

70111

60110

50101

40100

30011

20010

10001

00000

-11111

-21110

-31101

-41100

-51011

-61010

decimal2’sc binary

23 - 1 =

-(23 - 1) =

-23 =

1010

complement all the bits

1011

and add a 1

M230 L10.22 Smith Spring 2008

� Instructions, like registers and words of data, are also
32 bits long

� Example: add $t0, $s1, $s2

� registers have numbers $t0=$8, $s1=$17, $s2=$18

� Instruction Format:

Can you guess what the field names stand for?

Machine Language - Arithmetic Instruction

op rs rt rd shamt funct

000000 10001 10010 01000 00000 100000

M230 L10.22 Smith Spring 2008

� Instructions, like registers and words of data, are also
32 bits long

� Example: add $t0, $s1, $s2

� registers have numbers $t0=$8, $s1=$17, $s2=$18

� Instruction Format:

Can you guess what the field names stand for?

Machine Language - Arithmetic Instruction

op rs rt rd shamt funct

000000 10001 10010 01000 00000 100000

M230 L10.22 Smith Spring 2008

� Instructions, like registers and words of data, are also
32 bits long

� Example: add $t0, $s1, $s2

� registers have numbers $t0=$8, $s1=$17, $s2=$18

� Instruction Format:

Can you guess what the field names stand for?

Machine Language - Arithmetic Instruction

op rs rt rd shamt funct

000000 10001 10010 01000 00000 100000

M230 L10.22 Smith Spring 2008

� Instructions, like registers and words of data, are also
32 bits long

� Example: add $t0, $s1, $s2

� registers have numbers $t0=$8, $s1=$17, $s2=$18

� Instruction Format:

Can you guess what the field names stand for?

Machine Language - Arithmetic Instruction

op rs rt rd shamt funct

000000 10001 10010 01000 00000 100000

M230 L10.22 Smith Spring 2008

� Instructions, like registers and words of data, are also
32 bits long

� Example: add $t0, $s1, $s2

� registers have numbers $t0=$8, $s1=$17, $s2=$18

� Instruction Format:

Can you guess what the field names stand for?

Machine Language - Arithmetic Instruction

op rs rt rd shamt funct

000000 10001 10010 01000 00000 100000

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

� op

� rs

� rt

� rd

� shamt

� funct

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

� op

� rs

� rt

� rd

� shamt

� funct

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

opcode indicating operation to be performed

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

� op

� rs

� rt

� rd

� shamt

� funct

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

opcode indicating operation to be performed

address of the first register source operand

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

� op

� rs

� rt

� rd

� shamt

� funct

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

opcode indicating operation to be performed

address of the first register source operand

address of the second register source operand

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

� op

� rs

� rt

� rd

� shamt

� funct

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

opcode indicating operation to be performed

address of the first register source operand

address of the second register source operand

the register destination address

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

� op

� rs

� rt

� rd

� shamt

� funct

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

opcode indicating operation to be performed

address of the first register source operand

address of the second register source operand

the register destination address

shift amount (for shift instructions)

M230 L10.24 Smith Spring 2008

MIPS Instruction Fields

� op

� rs

� rt

� rd

� shamt

� funct

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits = 32 bits

opcode indicating operation to be performed

address of the first register source operand

address of the second register source operand

the register destination address

shift amount (for shift instructions)

function code that selects the specific variant of the
operation specified in the opcode field

M230 L10.26 Smith Spring 2008

� Consider the load-word and store-word instructions,
� What would the regularity principle have us do?

� New principle: Good design demands a compromise

� Introduce a new type of instruction format
� I-type for data transfer instructions

� previous format was R-type for register

� Example: lw $t0, 24($s2)

Where's the compromise?

Machine Language - Load Instruction

op rs rt 16 bit number

35 18 8 24

100011 10010 01000 0000000000011000

M230 L10.26 Smith Spring 2008

� Consider the load-word and store-word instructions,
� What would the regularity principle have us do?

� New principle: Good design demands a compromise

� Introduce a new type of instruction format
� I-type for data transfer instructions

� previous format was R-type for register

� Example: lw $t0, 24($s2)

Where's the compromise?

Machine Language - Load Instruction

op rs rt 16 bit number

35 18 8 24

100011 10010 01000 0000000000011000

M230 L10.26 Smith Spring 2008

� Consider the load-word and store-word instructions,
� What would the regularity principle have us do?

� New principle: Good design demands a compromise

� Introduce a new type of instruction format
� I-type for data transfer instructions

� previous format was R-type for register

� Example: lw $t0, 24($s2)

Where's the compromise?

Machine Language - Load Instruction

op rs rt 16 bit number

35 18 8 24

100011 10010 01000 0000000000011000

M230 L10.26 Smith Spring 2008

� Consider the load-word and store-word instructions,
� What would the regularity principle have us do?

� New principle: Good design demands a compromise

� Introduce a new type of instruction format
� I-type for data transfer instructions

� previous format was R-type for register

� Example: lw $t0, 24($s2)

Where's the compromise?

Machine Language - Load Instruction

op rs rt 16 bit number

35 18 8 24

100011 10010 01000 0000000000011000

M230 L10.26 Smith Spring 2008

� Consider the load-word and store-word instructions,
� What would the regularity principle have us do?

� New principle: Good design demands a compromise

� Introduce a new type of instruction format
� I-type for data transfer instructions

� previous format was R-type for register

� Example: lw $t0, 24($s2)

Where's the compromise?

Machine Language - Load Instruction

op rs rt 16 bit number

35 18 8 24

100011 10010 01000 0000000000011000

M230 L10.28 Smith Spring 2008

Memory Address Location

� Example: lw $t0, 24($s2)

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

0x00000002

2410 + $s2 =

Note that the offset can
be positive or negative

M230 L10.28 Smith Spring 2008

Memory Address Location

� Example: lw $t0, 24($s2)

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

0x00000002

2410 + $s2 =

Note that the offset can
be positive or negative

. . . 1001 0100
+ . . . 0001 1000

. . . 1010 1100 =
0x120040ac

M230 L10.30 Smith Spring 2008

� Example: sw $t0, 24($s2)

� A 16-bit address means access is limited to memory
locations within a region of ±213 or 8,192 words (±215 or
32,768 bytes) of the address in the base register $s2

Machine Language - Store Instruction

op rs rt 16 bit number

43 18 8 24

101011 10010 01000 0000000000011000

M230 L10.30 Smith Spring 2008

� Example: sw $t0, 24($s2)

� A 16-bit address means access is limited to memory
locations within a region of ±213 or 8,192 words (±215 or
32,768 bytes) of the address in the base register $s2

Machine Language - Store Instruction

op rs rt 16 bit number

43 18 8 24

101011 10010 01000 0000000000011000

M230 L10.30 Smith Spring 2008

� Example: sw $t0, 24($s2)

� A 16-bit address means access is limited to memory
locations within a region of ±213 or 8,192 words (±215 or
32,768 bytes) of the address in the base register $s2

Machine Language - Store Instruction

op rs rt 16 bit number

43 18 8 24

101011 10010 01000 0000000000011000

M230 L10.30 Smith Spring 2008

� Example: sw $t0, 24($s2)

� A 16-bit address means access is limited to memory
locations within a region of ±213 or 8,192 words (±215 or
32,768 bytes) of the address in the base register $s2

Machine Language - Store Instruction

op rs rt 16 bit number

43 18 8 24

101011 10010 01000 0000000000011000

M230 L10.30 Smith Spring 2008

� Example: sw $t0, 24($s2)

� A 16-bit address means access is limited to memory
locations within a region of ±213 or 8,192 words (±215 or
32,768 bytes) of the address in the base register $s2

Machine Language - Store Instruction

op rs rt 16 bit number

43 18 8 24

101011 10010 01000 0000000000011000

M230 L10.31 Smith Spring 2008

Review: MIPS Organization

Processor
Memory

32 bits

230

words

read/write
addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

ALU
32

32

32 0 1 2 3

7654

byte address
(big Endian)

� Arithmetic instructions – to/from the register file

� Load/store word and byte instructions – from/to memory

Fetch

DecodeExec

