
M230 L09.1 Smith Spring 2008

Math 230
Assembly Programming
(AKA Computer Organization)

Spring 2008

Adapted from slides developed for:

Mary J. Irwin PSU CSE331

Dave Patterson’s UCB CS152

MIPS Intro

M230 L09.2 Smith Spring 2008

MIPS - originally an acronym for
Microprocessor without
Interlocked Pipeline Stages)

M230 L09.3 Smith Spring 2008

M230 L09.5 Smith Spring 2008

Below the Program

M230 L09.5 Smith Spring 2008

Below the Program

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

. . .

M230 L09.5 Smith Spring 2008

Below the Program

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4,$2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

M230 L09.5 Smith Spring 2008

Below the Program

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4,$2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� High-level language program (in C)
swap (int v[], int k)

{int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

M230 L09.5 Smith Spring 2008

Below the Program

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4,$2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� High-level language program (in C)
swap (int v[], int k)

{int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

C compiler

M230 L09.5 Smith Spring 2008

Below the Program

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4,$2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� High-level language program (in C)
swap (int v[], int k)

{int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

C compiler

assembler

M230 L09.7 Smith Spring 2008

Advantages of Higher-Level Languages

� Higher-level languages

� As a result, very little programming is done today at
the assembler level

M230 L09.7 Smith Spring 2008

Advantages of Higher-Level Languages

� Higher-level languages

� As a result, very little programming is done today at
the assembler level

� Allow the programmer to think in a more natural language and
for their intended use (Fortran for scientific computation,
Cobol for business programming, Lisp for symbol
manipulation, …)

M230 L09.7 Smith Spring 2008

Advantages of Higher-Level Languages

� Higher-level languages

� As a result, very little programming is done today at
the assembler level

� Allow the programmer to think in a more natural language and
for their intended use (Fortran for scientific computation,
Cobol for business programming, Lisp for symbol
manipulation, …)

� Improve programmer productivity – more understandable
code that is easier to debug and validate

M230 L09.7 Smith Spring 2008

Advantages of Higher-Level Languages

� Higher-level languages

� As a result, very little programming is done today at
the assembler level

� Allow the programmer to think in a more natural language and
for their intended use (Fortran for scientific computation,
Cobol for business programming, Lisp for symbol
manipulation, …)

� Improve programmer productivity – more understandable
code that is easier to debug and validate

� Improve program maintainability

M230 L09.7 Smith Spring 2008

Advantages of Higher-Level Languages

� Higher-level languages

� As a result, very little programming is done today at
the assembler level

� Allow the programmer to think in a more natural language and
for their intended use (Fortran for scientific computation,
Cobol for business programming, Lisp for symbol
manipulation, …)

� Improve programmer productivity – more understandable
code that is easier to debug and validate

� Improve program maintainability

� Allow programmers to be independent of the computer on
which they are developed (compilers and assemblers can
translate high-level language programs to the binary
instructions of any machine)

M230 L09.7 Smith Spring 2008

Advantages of Higher-Level Languages

� Higher-level languages

� As a result, very little programming is done today at
the assembler level

� Allow the programmer to think in a more natural language and
for their intended use (Fortran for scientific computation,
Cobol for business programming, Lisp for symbol
manipulation, …)

� Improve programmer productivity – more understandable
code that is easier to debug and validate

� Improve program maintainability

� Allow programmers to be independent of the computer on
which they are developed (compilers and assemblers can
translate high-level language programs to the binary
instructions of any machine)

� Emergence of optimizing compilers that produce very efficient
assembly code optimized for the target machine

M230 L09.8 Smith Spring 2008

Machine Organization

M230 L09.8 Smith Spring 2008

Machine Organization

� Capabilities and performance characteristics of the
principal Functional Units (FUs)

� e.g., register file, ALU, multiplexors, memories, ...

M230 L09.8 Smith Spring 2008

Machine Organization

� Capabilities and performance characteristics of the
principal Functional Units (FUs)

� e.g., register file, ALU, multiplexors, memories, ...

� The ways those FUs are
interconnected

� e.g., buses

M230 L09.8 Smith Spring 2008

Machine Organization

� Capabilities and performance characteristics of the
principal Functional Units (FUs)

� e.g., register file, ALU, multiplexors, memories, ...

� The ways those FUs are
interconnected

� e.g., buses

� Logic and means by which
information flow between FUs
is controlled

M230 L09.8 Smith Spring 2008

Machine Organization

� Capabilities and performance characteristics of the
principal Functional Units (FUs)

� e.g., register file, ALU, multiplexors, memories, ...

� The ways those FUs are
interconnected

� e.g., buses

� Logic and means by which
information flow between FUs
is controlled

� The machine’s Instruction Set Architecture (ISA)

M230 L09.8 Smith Spring 2008

Machine Organization

� Capabilities and performance characteristics of the
principal Functional Units (FUs)

� e.g., register file, ALU, multiplexors, memories, ...

� The ways those FUs are
interconnected

� e.g., buses

� Logic and means by which
information flow between FUs
is controlled

� The machine’s Instruction Set Architecture (ISA)

� Register Transfer Level (RTL) machine description

M230 L09.9 Smith Spring 2008

Major Components of a Computer

Processor

Control

Datapath

Memory

Devices

Input

Output

M230 L09.11 Smith Spring 2008

Below the Program

C compiler

assembler

one-to-many

one-to-one

� High-level language program (in C)
swap (int v[], int k)

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

M230 L09.11 Smith Spring 2008

Below the Program

C compiler

assembler

one-to-many

one-to-one

� High-level language program (in C)
swap (int v[], int k)

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

M230 L09.11 Smith Spring 2008

Below the Program

C compiler

assembler

one-to-many

one-to-one

� High-level language program (in C)
swap (int v[], int k)

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

M230 L09.11 Smith Spring 2008

Below the Program

C compiler

assembler

one-to-many

one-to-one

� High-level language program (in C)
swap (int v[], int k)

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

M230 L09.11 Smith Spring 2008

Below the Program

C compiler

assembler

one-to-many

one-to-one

� High-level language program (in C)
swap (int v[], int k)

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

M230 L09.11 Smith Spring 2008

Below the Program

C compiler

assembler

one-to-many

one-to-one

� High-level language program (in C)
swap (int v[], int k)

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

sw

sw

jr

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

M230 L09.11 Smith Spring 2008

Below the Program

C compiler

assembler

one-to-many

one-to-one

� High-level language program (in C)
swap (int v[], int k)

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

sw

sw

jr

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

M230 L09.11 Smith Spring 2008

Below the Program

C compiler

assembler

one-to-many

one-to-one

� High-level language program (in C)
swap (int v[], int k)

. . .

� Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

� Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

add $2, $4, $2

lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

sw

sw

jr

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

sw $16, 0($2)

sw $15, 4($2)

jr $31

Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

M230 L09.12 Smith Spring 2008

Input Device Inputs Object Code

Processor

Control

Datapath

Memory

Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

M230 L09.13 Smith Spring 2008

Object Code Stored in Memory

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

M230 L09.14 Smith Spring 2008

Processor Fetches an Instruction

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

Processor fetches an instruction from memory

Where does it fetch from?

M230 L09.15 Smith Spring 2008

Control Decodes the Instruction

Processor

Control

Datapath

Memory

Devices

Input

Output

000000 00100 00010 0001000000100000

Control decodes the instruction to determine
what to execute

M230 L09.16 Smith Spring 2008

Datapath Executes the Instruction

Processor

Control

Datapath

Memory

Devices

Input

Output
contents Reg #4 ADD contents Reg #2

results put in Reg #2

Datapath executes the instruction as directed
by control

000000 00100 00010 0001000000100000

M230 L09.17 Smith Spring 2008

Processor Organization

M230 L09.17 Smith Spring 2008

Processor Organization

� Control needs to have the

� Ability to input instructions from memory

� Logic and means to control instruction sequencing

� Logic and means to issue signals that control the way
information flows between datapath components

� Logic and means to control what operations the datapath’s
functional units perform

M230 L09.17 Smith Spring 2008

Processor Organization

� Control needs to have the

� Ability to input instructions from memory

� Logic and means to control instruction sequencing

� Logic and means to issue signals that control the way
information flows between datapath components

� Logic and means to control what operations the datapath’s
functional units perform

� Datapath needs to have the

� Components - functional units (e.g., adder) and storage
locations (e.g., register file) - needed to execute instructions

� Components interconnected so that the instructions can be
accomplished

� Ability to load data from and store data to memory

M230 L09.17 Smith Spring 2008

Processor Organization

� Control needs to have the

� Ability to input instructions from memory

� Logic and means to control instruction sequencing

� Logic and means to issue signals that control the way
information flows between datapath components

� Logic and means to control what operations the datapath’s
functional units perform

� Datapath needs to have the

� Components - functional units (e.g., adder) and storage
locations (e.g., register file) - needed to execute instructions

� Components interconnected so that the instructions can be
accomplished

� Ability to load data from and store data to memory

Where does it load and store from and to?

M230 L09.19 Smith Spring 2008

What Happens Next?

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

M230 L09.19 Smith Spring 2008

What Happens Next?

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

Fetch

M230 L09.19 Smith Spring 2008

What Happens Next?

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

Fetch

M230 L09.19 Smith Spring 2008

What Happens Next?

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

Fetch

Decode

M230 L09.19 Smith Spring 2008

What Happens Next?

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

Fetch

Decode

M230 L09.19 Smith Spring 2008

What Happens Next?

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

Fetch

DecodeExec

M230 L09.19 Smith Spring 2008

What Happens Next?

Processor

Control

Datapath

Memory
Devices

Input

Output

000000 00000 00101 0001000010000000

000000 00100 00010 0001000000100000

100011 00010 01111 0000000000000000

100011 00010 10000 0000000000000100

101011 00010 10000 0000000000000000

101011 00010 01111 0000000000000100

000000 11111 00000 0000000000001000

Fetch

DecodeExec

M230 L09.20 Smith Spring 2008

Output Data Stored in Memory

Processor

Control

Datapath

Memory
Devices

Input

Output
00000100010100000000000000000000

00000000010011110000000000000100

00000011111000000000000000001000

At program completion the data to be output
resides in memory

M230 L09.20 Smith Spring 2008

Output Data Stored in Memory

Processor

Control

Datapath

Memory
Devices

Input

Output
00000100010100000000000000000000

00000000010011110000000000000100

00000011111000000000000000001000

At program completion the data to be output
resides in memory

M230 L09.21 Smith Spring 2008

Output Device Outputs Data

Processor

Control

Datapath

Memory

Devices

Input

Output

00000100010100000000000000000000

00000000010011110000000000000100

00000011111000000000000000001000

M230 L09.22 Smith Spring 2008

The Instruction Set Architecture

instruction set architecture

software

hardware

M230 L09.22 Smith Spring 2008

The Instruction Set Architecture

instruction set architecture

software

hardware

instruction set architecture

M230 L09.22 Smith Spring 2008

The Instruction Set Architecture

instruction set architecture

software

hardware

instruction set architecture

The interface description separating the
software and hardware.

M230 L09.23 Smith Spring 2008

MIPS R3000 Instruction Set Architecture

� Instruction Categories

� Load/Store

� Computational

� Jump and Branch

� Floating Point

- coprocessor

� Memory Management

� Special

R0 - R31

PC

HI

LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

� 3 Instruction Formats: all 32 bits wide

Registers

M230 L09.23 Smith Spring 2008

MIPS R3000 Instruction Set Architecture

� Instruction Categories

� Load/Store

� Computational

� Jump and Branch

� Floating Point

- coprocessor

� Memory Management

� Special

R0 - R31

PC

HI

LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

� 3 Instruction Formats: all 32 bits wide

Registers

Q: How many already familiar with MIPS ISA?

M230 L09.25 Smith Spring 2008

Assembly Language Instructions

� Language of the machine

� More primitive than higher level languages
e.g., no sophisticated control flow

� Very restrictive
e.g., MIPS arithmetic instructions

� We’ll be working with the MIPS instruction set
architecture
� similar to other architectures developed since the 1980's

� used by NEC, Nintendo, Silicon Graphics, Sony, …

Design goals: maximize performance, minimize cost,
reduce design time, minimize memory space

(embedded systems), minimize power consumption
(mobile systems)

M230 L09.26 Smith Spring 2008

RISC - Reduced Instruction Set Computer

� RISC philosophy

� fixed instruction lengths

� load-store instruction sets

� limited addressing modes

� limited operations

� MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC, Intel
(Compaq) Alpha, …

� Instruction sets are measured by how well compilers
use them as opposed to how well assembly language
programmers use them

M230 L09.28 Smith Spring 2008

MIPS Arithmetic Instruction

� MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

� Each arithmetic instruction performs only one
operation

� Each arithmetic instruction specifies exactly three
operands

destination ← source1 op source2

� Those operands are contained in the datapath’s
register file ($t0, $s1,$s2)

� Operand order is fixed (destination first)

M230 L09.28 Smith Spring 2008

MIPS Arithmetic Instruction

� MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

� Each arithmetic instruction performs only one
operation

� Each arithmetic instruction specifies exactly three
operands

destination ← source1 op source2

� Those operands are contained in the datapath’s
register file ($t0, $s1,$s2)

� Operand order is fixed (destination first)

M230 L09.28 Smith Spring 2008

MIPS Arithmetic Instruction

� MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

� Each arithmetic instruction performs only one
operation

� Each arithmetic instruction specifies exactly three
operands

destination ← source1 op source2

� Those operands are contained in the datapath’s
register file ($t0, $s1,$s2)

� Operand order is fixed (destination first)

M230 L09.28 Smith Spring 2008

MIPS Arithmetic Instruction

� MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

� Each arithmetic instruction performs only one
operation

� Each arithmetic instruction specifies exactly three
operands

destination ← source1 op source2

� Those operands are contained in the datapath’s
register file ($t0, $s1,$s2)

� Operand order is fixed (destination first)

M230 L09.28 Smith Spring 2008

MIPS Arithmetic Instruction

� MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

� Each arithmetic instruction performs only one
operation

� Each arithmetic instruction specifies exactly three
operands

destination ← source1 op source2

� Those operands are contained in the datapath’s
register file ($t0, $s1,$s2)

� Operand order is fixed (destination first)

M230 L09.30 Smith Spring 2008

Compiling More Complex Statements

� Assuming variable b is stored in register $s1, c is
stored in $s2, and d is stored in $s3 and the result is
to be left in $s0, what is the assembler equivalent to
the C statement

h = (b - c) + d

M230 L09.30 Smith Spring 2008

Compiling More Complex Statements

� Assuming variable b is stored in register $s1, c is
stored in $s2, and d is stored in $s3 and the result is
to be left in $s0, what is the assembler equivalent to
the C statement

h = (b - c) + d

sub $t0, $s1, $s2

add $s0, $t0, $s3

M230 L09.32 Smith Spring 2008

MIPS Register File
� Operands of arithmetic instructions must be from a

limited number of special locations contained in the
datapath’s register file

� Holds thirty-two 32-bit registers

- With two read ports and

- One write port

� Registers are

� Faster than main memory

� Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

� Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

� Register addresses are indicated by using $

M230 L09.32 Smith Spring 2008

MIPS Register File
� Operands of arithmetic instructions must be from a

limited number of special locations contained in the
datapath’s register file

� Holds thirty-two 32-bit registers

- With two read ports and

- One write port

� Registers are

� Faster than main memory

� Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

� Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

� Register addresses are indicated by using $

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

M230 L09.32 Smith Spring 2008

MIPS Register File
� Operands of arithmetic instructions must be from a

limited number of special locations contained in the
datapath’s register file

� Holds thirty-two 32-bit registers

- With two read ports and

- One write port

� Registers are

� Faster than main memory

� Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

� Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

� Register addresses are indicated by using $

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

5

M230 L09.32 Smith Spring 2008

MIPS Register File
� Operands of arithmetic instructions must be from a

limited number of special locations contained in the
datapath’s register file

� Holds thirty-two 32-bit registers

- With two read ports and

- One write port

� Registers are

� Faster than main memory

� Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

� Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

� Register addresses are indicated by using $

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

5

5

M230 L09.32 Smith Spring 2008

MIPS Register File
� Operands of arithmetic instructions must be from a

limited number of special locations contained in the
datapath’s register file

� Holds thirty-two 32-bit registers

- With two read ports and

- One write port

� Registers are

� Faster than main memory

� Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

� Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

� Register addresses are indicated by using $

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

5

5

5

M230 L09.32 Smith Spring 2008

MIPS Register File
� Operands of arithmetic instructions must be from a

limited number of special locations contained in the
datapath’s register file

� Holds thirty-two 32-bit registers

- With two read ports and

- One write port

� Registers are

� Faster than main memory

� Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

� Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

� Register addresses are indicated by using $

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

5

5

5

32

M230 L09.32 Smith Spring 2008

MIPS Register File
� Operands of arithmetic instructions must be from a

limited number of special locations contained in the
datapath’s register file

� Holds thirty-two 32-bit registers

- With two read ports and

- One write port

� Registers are

� Faster than main memory

� Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

� Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

� Register addresses are indicated by using $

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

5

5

5

32

32

M230 L09.32 Smith Spring 2008

MIPS Register File
� Operands of arithmetic instructions must be from a

limited number of special locations contained in the
datapath’s register file

� Holds thirty-two 32-bit registers

- With two read ports and

- One write port

� Registers are

� Faster than main memory

� Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

� Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

� Register addresses are indicated by using $

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

5

5

5

32

32

32

M230 L09.33 Smith Spring 2008

0 $zero constant 0 (Hdware)

1 $at reserved for assembler

2 $v0 expression evaluation &

3 $v1 function results

4 $a0 arguments

5 $a1

6 $a2

7 $a3

8 $t0 temporary: caller saves

. . . (callee can clobber)

15 $t7

Naming Conventions for Registers

16 $s0 callee saves

. . . (caller can clobber)

23 $s7

24 $t8 temporary (cont’d)

25 $t9

26 $k0 reserved for OS kernel

27 $k1

28 $gp pointer to global area

29 $sp stack pointer

30 $fp frame pointer

31 $ra return address (Hdware)

M230 L09.35 Smith Spring 2008

Registers vs. Memory

� Arithmetic instructions operands must be registers,
— only thirty-two registers provided

� Compiler associates variables with registers

� What about programs with lots of variables?

Processor

Control

Datapath

Memory

Devices

Input

Output

M230 L09.35 Smith Spring 2008

Registers vs. Memory

� Arithmetic instructions operands must be registers,
— only thirty-two registers provided

� Compiler associates variables with registers

� What about programs with lots of variables?

Processor

Control

Datapath

Memory

Devices

Input

Output

M230 L09.35 Smith Spring 2008

Registers vs. Memory

� Arithmetic instructions operands must be registers,
— only thirty-two registers provided

� Compiler associates variables with registers

� What about programs with lots of variables?

Processor

Control

Datapath

Memory

Devices

Input

Output

M230 L09.37 Smith Spring 2008

Accessing Memory

� MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

(assume $s3 holds 2410)

� The data transfer instruction must specify

� where in memory to read from (load) or write to (store) – memory
address

� where in the register file to write to (load) or read from (store) –
register destination (source)

� The memory address is formed by summing the constant
portion of the instruction and the contents of the second
register

M230 L09.37 Smith Spring 2008

Accessing Memory

� MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

(assume $s3 holds 2410)

� The data transfer instruction must specify

� where in memory to read from (load) or write to (store) – memory
address

� where in the register file to write to (load) or read from (store) –
register destination (source)

� The memory address is formed by summing the constant
portion of the instruction and the contents of the second
register

28

M230 L09.37 Smith Spring 2008

Accessing Memory

� MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

(assume $s3 holds 2410)

� The data transfer instruction must specify

� where in memory to read from (load) or write to (store) – memory
address

� where in the register file to write to (load) or read from (store) –
register destination (source)

� The memory address is formed by summing the constant
portion of the instruction and the contents of the second
register

28

32

M230 L09.38 Smith Spring 2008

MIPS Instructions, so far

43

35

0 and 34

0 and 32

Op Code

Memory($s2+100) = $s1sw $s1, 100($s2)store word

$s1 = Memory($s2+100)lw $s1, 100($s2)load wordData

transfer

(I format)

$s1 = $s2 - $s3sub $s1, $s2, $s3subtract

$s1 = $s2 + $s3add $s1, $s2, $s3addArithmetic

(R format)

MeaningExampleInstrCategory

