
C Programming Language:

Memory Management: malloc/free,

first/next/best fit

Math 230

Assembly Language Programming

(Computer Organization)

Thu. Feb 7, 2008

2

Overview

• malloc

� under the hood

� first-fit, best-fit, next-fit, buddy system

Recall: Normal C Memory Management

• A program’s address space

contains 4 regions:

� stack: local variables, grows

downward

� heap: space requested for
pointers via malloc() ;

resizes dynamically, grows

upward

� static data: variables declared

outside main, does not grow or

shrink

� code: loaded when program

starts, does not change

code

static data

heap

stack

For now, OS somehow
prevents accesses between
stack and heap (gray hash
lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex

slide from DGarcia CS61C UC Berkeley

6

Recall: Memory Management

• How do we manage memory?

• Code, Static storage are easy:

they never grow or shrink

• Stack space is also easy:

stack frames are created and destroyed in last-

in, first-out (LIFO) order

• Managing the heap is tricky:

memory can be allocated / deallocated at any

time

slide from DGarcia CS61C UC Berkeley

7

Heap Management Requirements

• Want malloc() and free() to run

quickly.

• Want minimal memory overhead

• Want to avoid fragmentation* –
when most of our free memory is in many
small chunks

� In this case, we might have many free bytes
but not be able to satisfy a large request since
the free bytes are not contiguous in memory.

* This is technically called external fragmention
slide from DGarcia CS61C UC Berkeley

8

Heap Management

• An example

� Request R1 for 100

bytes

� Request R2 for 1 byte

� Memory from R1 is

freed

� Request R3 for 50 bytes

slide from DGarcia CS61C UC Berkeley

8

Heap Management

• An example

� Request R1 for 100

bytes

� Request R2 for 1 byte

� Memory from R1 is

freed

� Request R3 for 50 bytes

slide from DGarcia CS61C UC Berkeley

R1 (100 bytes)

8

Heap Management

• An example

� Request R1 for 100

bytes

� Request R2 for 1 byte

� Memory from R1 is

freed

� Request R3 for 50 bytes

slide from DGarcia CS61C UC Berkeley

R1 (100 bytes)

R2 (1 byte)

9

Heap Management

• An example

� Request R1 for 100

bytes

� Request R2 for 1 byte

� Memory from R1 is

freed

� Request R3 for 50 bytes

R2 (1 byte)

slide from DGarcia CS61C UC Berkeley

9

Heap Management

• An example

� Request R1 for 100

bytes

� Request R2 for 1 byte

� Memory from R1 is

freed

� Request R3 for 50 bytes

R2 (1 byte)

slide from DGarcia CS61C UC Berkeley

R3?

R3?

10

K&R Malloc/Free Implementation

• From Section 8.7 of K&R

� Code in the book uses some C language
features we haven’t discussed and is written in
a very terse style, don’t worry if you can’t
decipher the code

• Each block of memory is preceded by a
header that has two fields:
size of the block and
a pointer to the next block

• All free blocks are kept in a linked list, the
pointer field is unused in an allocated block

slide from DGarcia CS61C UC Berkeley

11

K&R Implementation

• malloc() searches the free list for a block that is big

enough. If none is found, more memory is requested

from the operating system. If what it gets can’t satisfy

the request, it fails.

• free() checks if the blocks adjacent to the freed

block are also free

� If so, adjacent free blocks are merged (coalesced) into a

single, larger free block

� Otherwise, the freed block is just added to the free list

slide from DGarcia CS61C UC Berkeley

12

Choosing a block in malloc()

• If there are multiple free blocks of memory
that are big enough for some request, how do
we choose which one to use?

� best-fit: choose the smallest block that is big
enough for the request

� first-fit: choose the first block we see that is
big enough

� next-fit: like first-fit but remember where we
finished searching and resume searching from
there

slide from DGarcia CS61C UC Berkeley

13

Tradeoffs of allocation policies

• Best-fit: Tries to limit fragmentation but at the
cost of time (must examine all free blocks for
each malloc). Leaves lots of small blocks
(why?)

• First-fit: Quicker than best-fit (why?) but
potentially more fragmentation. Tends to
concentrate small blocks at the beginning of
the free list (why?)

• Next-fit: Does not concentrate small blocks at
front like first-fit, should be faster as a result.

slide from DGarcia CS61C UC Berkeley

14

And in conclusion…
• C has 3 pools of memory

� Static storage: global variable storage, basically

permanent, entire program run

� The Stack: local variable storage, parameters, return

address

� The Heap (dynamic storage): malloc() grabs space

from here, free() returns it.

•malloc() handles free space with freelist. Three

different ways to find free space when given a request:

� First fit (find first one that’s free)

� Next fit (same as first, but remembers where left off)

� Best fit (finds most “snug” free space)

slide from DGarcia CS61C UC Berkeley

15

Memory Model

16

Memory Model

• Needed memory space

� automatic variables local to

procedures

• automatically allocated upon function

entry

� Static variables

• exists independent of any function;

generally global in scope

� dynamically allocated

• requested and delivered as needed

17

MIPS memory conventions

• stack

� memory used from the top
down

• heap

� memory used from lower to
higher, bottom up

• machine code

� resides in memory even lower
than the heap

� traditionally called the “text”
segment

18

Memory Mgmt Via malloc

• malloc manages memory requested by malloc

• other programs may have also requested their

own space, not managed by malloc

� malloc may not have contiguous blocks

• malloc keeps track via linked lists

in use in usein usein use

free

19

malloc

• memory mgmt algorithms

� first fit
• free list scanned/walked until big-enough block is

found

� best fit
• looks for smallest block of memory to meet request

• exact sized blocks are unlinked from the list and given
to (claimed for) the user

• big blocks are split and proper amount returned to user

– rest remains on free list

• if necessary, malloc will link in additional memory
from the OS

20

freeing memory

• when memory is freed, the list
allocated must be returned to
malloc’s working list

• returned block may be “merged”
(coalesced) with block next to it

� helps with fragmentation

21

malloc blocks

size

points to next free block

address returned to user
freeMemPtr

size

userAddr

22

malloc blocks II

• free blocks

� pointer to next block in chain

� size of block

� available space follows
•malloc’ed memory items are “tagged”

size

points to next free block

address returned to user

size

points to next free block

address returned to user

23

malloc blocks III

union header {

struct {

unsigned size;

union header *ptr;

} s;

};

typedef union header Header;

24

Summary

