
C Programming Language: 

C ADTs: Lists and Linked Data

Math 230

Assembly Language Programming 

(Computer Organization)

Tuesday Feb 5, 2008

L07



2

Overview

• strings and arrays, malloc, free

• struct and union

� Linked Lists



3

Linked-List

linked-list of grades:

88 91 71 86

88 91 71 86

array of grades:

The data could be 

held in a “struct” 

containing an integer 

and a pointer

The data here is 

held in an array of 

integers

What is the “data type” of the pointer?

The pointer is defined such that it points to another node. The node 
it points to is the same type of struct in which it resides.



4

Linked-List Definition

• Definition: A linked list is a set of items where each item is 

a part of a node that also contains a link to a node.

• It is a sequence of “nodes,” each containing

� data field(s) (the Item)

� one (or more) links to the next node; a “reference”

‘N’ ‘E’ ‘M’ ‘O’



4

Linked-List Definition

• Definition: A linked list is a set of items where each item is 

a part of a node that also contains a link to a node.

• It is a sequence of “nodes,” each containing

� data field(s) (the Item)

� one (or more) links to the next node; a “reference”

‘N’ ‘E’ ‘M’ ‘O’

node



4

Linked-List Definition

• Definition: A linked list is a set of items where each item is 

a part of a node that also contains a link to a node.

• It is a sequence of “nodes,” each containing

� data field(s) (the Item)

� one (or more) links to the next node; a “reference”

‘N’ ‘E’ ‘M’ ‘O’

node
link



4

Linked-List Definition

• Definition: A linked list is a set of items where each item is 

a part of a node that also contains a link to a node.

• It is a sequence of “nodes,” each containing

� data field(s) (the Item)

� one (or more) links to the next node; a “reference”

‘N’ ‘E’ ‘M’ ‘O’

node
linkitem



5

Linked Lists 

• The link in the final node can be represented a 

number of ways

� As a null link that points to no node

� A reference to a dummy node that contains no item

� A reference back to the first node, making the list a 

circular list.

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’



5

Linked Lists 

• The link in the final node can be represented a 

number of ways

� As a null link that points to no node

� A reference to a dummy node that contains no item

� A reference back to the first node, making the list a 

circular list.

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’



5

Linked Lists 

• The link in the final node can be represented a 

number of ways

� As a null link that points to no node

� A reference to a dummy node that contains no item

� A reference back to the first node, making the list a 

circular list.

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’



7

Linked-List Code



7

Linked-List Code

struct node { 



7

Linked-List Code

struct node { 

int item; 



7

Linked-List Code

struct node { 

int item; 

struct node* next; 



7

Linked-List Code

struct node { 

int item; 

struct node* next; 

};



7

Linked-List Code

struct node { 

int item; 

struct node* next; 

};

typedef int Item; //or char, float,char*,etc

typedef struct node* link;

struct node { 

Item item; 

link next; 

};

typedef int Item; //or char, float,char*,etc

typedef struct node* link;

struct node { 

Item item; 

link next; 

};



8

The Utility of Lists

• Linked lists help us manage constantly 

changing lists of data

• They help us with the insertion and deletion 

of existing records

• Each item contains information on how to get 

to the next item

• It is a set of items where each item is part of a 

node that also contains a link to a node



9

malloc() and Linked-Lists

• We’ve created one “node" data type

• We’ll have many instances of this one type 

� Recall: we can have also have muliple instances of 

int

• To create a new instance of a node and reserve 

memory for it:

Use #include<stdlib.h>



9

malloc() and Linked-Lists

• We’ve created one “node" data type

• We’ll have many instances of this one type 

� Recall: we can have also have muliple instances of 

int

• To create a new instance of a node and reserve 

memory for it:

Use #include<stdlib.h>

link x = malloc(sizeof *x );



10

free() - letting go of previously allocated memory

• When you’re done with the node, you should free the 
previously allocated memory using “free()”

• The interface:

• Its usage

• Helps you avoid memory leaks.  Continuously allocating 
memory without freeing any could lead to a “crash.” 

� memory leaks!



10

free() - letting go of previously allocated memory

• When you’re done with the node, you should free the 
previously allocated memory using “free()”

• The interface:

• Its usage

• Helps you avoid memory leaks.  Continuously allocating 
memory without freeing any could lead to a “crash.” 

� memory leaks!

void free(void* ptr); 



10

free() - letting go of previously allocated memory

• When you’re done with the node, you should free the 
previously allocated memory using “free()”

• The interface:

• Its usage

• Helps you avoid memory leaks.  Continuously allocating 
memory without freeing any could lead to a “crash.” 

� memory leaks!

void free(void* ptr); 

free(x); 



11

Accessing list-node information

• Dereference the pointer, then use the structure 

member names

• The “item” in the node referenced by link x is 

(*x).item or x->item

� (the data type of item is Item)

• The link to the next node is indicated by 

(*x).next,    or    x->next

� (the data type of next is link)

‘N’ ‘M’ ‘O’
‘U’

‘N’‘N’ ‘M’‘M’ ‘O’‘O’
‘U’‘U’

t

x



12

Fundamental Operations on Linked Lists

• Linked-list Deletion

• Linked-list Insertion



13

Linked-list Deletion

• The node containing ‘E’ can be removed  by 

redirecting the node that points to it:



13

Linked-list Deletion

• The node containing ‘E’ can be removed  by 

redirecting the node that points to it:

‘N’ ‘E’ ‘M’ ‘O’



13

Linked-list Deletion

• The node containing ‘E’ can be removed  by 

redirecting the node that points to it:

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’



13

Linked-list Deletion

• The node containing ‘E’ can be removed  by 

redirecting the node that points to it:

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’

‘N’ ‘M’ ‘O’



14

Linked-list Deletion

• To “delete” the node containing ‘E’ (the 2 below are equiv)

t = x->next;

x->next = t->next;

t = x->next;

x->next = t->next;

x->next = x->next->next;x->next = x->next->next;

‘N’ ‘M’ ‘O’‘N’ ‘M’‘M’ ‘O’

‘N’ ‘E’ ‘M’ ‘O’‘N’ ‘E’ ‘M’ ‘O’‘N’‘N’ ‘E’‘E’ ‘M’‘M’ ‘O’‘O’

‘N’ ‘E’ ‘M’ ‘O’‘N’‘N’ ‘E’‘E’ ‘M’‘M’ ‘O’‘O’



15

Linked-list Insertion

• The node containing ‘U’ can be inserted into the list



15

Linked-list Insertion

• The node containing ‘U’ can be inserted into the list

‘N’ ‘M’ ‘O’

‘U’



15

Linked-list Insertion

• The node containing ‘U’ can be inserted into the list

‘N’ ‘M’ ‘O’

‘U’

‘N’ ‘M’ ‘O’

‘U’



15

Linked-list Insertion

• The node containing ‘U’ can be inserted into the list

‘N’ ‘M’ ‘O’

‘U’

‘N’ ‘M’ ‘O’

‘U’

‘N’ ‘M’ ‘O’
‘U’



16

Linked-list Insertion

• To insert node containing ‘U’ into a list

‘N’ ‘M’ ‘O’

‘U’

‘N’ ‘M’ ‘O’‘N’ ‘M’‘M’ ‘O’

‘U’‘U’

‘N’ ‘M’ ‘O’

‘U’

‘N’‘N’ ‘M’‘M’ ‘O’‘O’

‘U’‘U’

‘N’ ‘M’ ‘O’
‘U’

‘N’‘N’ ‘M’‘M’ ‘O’‘O’
‘U’‘U’

t->next = x->next;

x->next = t;

t->next = x->next;

x->next = t;



17

Array vs Linked-List

• Given an array of fixed size, inserting an 

element into the nth positon is tricky

• Access into a linked-list is not as efficient as 

an array when finding the kth item simply 

using a[k]

• Linked lists are an alternative to arrays



18

NULL  - End of List

• The NULL pointer is frequently used as a 

sentinel to mark the end-of-string NULL.

� both serve similar purposes



19

Summary

• Linked lists

� help us manage constantly changing lists of 

data

� help us with insertion and deletion of existing 

records

� is a basic data structure where each item 

contains information on how to get to the next 

item

� is a set of items where each item is part of a 

node that also contains a link to a node


