
C Programming Language:

C ADTs , 2d Dynamic Allocation

Math 230

Assembly Language Programming

(Computer Organization)

Thursday Jan 31, 2008

2

Overview

• Row major format

• 1 and 2-d dynamic allocation

• struct and union

4

Strings: Dynamic Allocation

/* malloc example: string generator*/
#include <stdio.h>
#include <stdlib.h>

int main ()
{

int i,n;
char * buffer;

printf ("How long do you want the string? ");
scanf ("%d", &i);

buffer = malloc (i+1);
if (buffer==NULL) exit (1);

for (n=0; n<i; n++)
buffer[n]=rand()%26+'a';

buffer[i]='\0';

printf ("Random string: %s\n",buffer);
free (buffer);

return 0;
}

5

Dynamic Array Allocation, Addressing

int a[20];

• Recall that &a[0] == a => a pointer constant

• C will do pointer math. Note:

(a+2) ���� &a[0] + 2*sizeof(a[0])

int* a;

a = malloc(20 * sizeof(int));

6

2-dimensional arrays

• For static array declaration: 3 rows, 4 cols

• What’s the equivalent declaration in pointer

notation of int x[3][4]; ?

• How do you address x[1][3] via pointers?

x11x10x9x8
i=2

x7x6x5x4
i=1

x3x2x1x0
i=0

j=3j=2j=1j=0

7

Row-Major Format I

• Interpret [3][4] as 3 groups of 4-tuples

x23x22x21x20
i=2

x13x12x11x10
i=1

x03x02x01x00
i=0

j=3j=2j=1j=0

840

x11x10x9x8x7x6x5x4x3x2x1x0

x11x10x9x8
i=2

x7x6x5x4
i=1

x3x2x1x0
i=0

j=3j=2j=1j=0

8

Row-Major Format II

• The first index selects the 4-tuple (the set)

� x[1][2] � start @ absolute position 4

� move two places

• moves us to sixth position

x11x10x9x8
i=2

x7x6x5x4
i=1

x3x2x1x0
i=0

j=0j=0j=0j=0

840

x23x22x21x20x13x12x11x10x03x02x01x00

840

x11x10x9x8x7x6x5x4x3x2x1x0

9

Row-Major Format III

• If the compiler knows it’s working with groups of 4, it can

determine the address of any element (based on indices, eg

x[2][1], x[1][3], etc.)

x[1][2] is located @ 1¥4+2 bytes

from address of x[0][0]

Hence: x[i][j] = *(x + i¥n + j)

where n is the row size (i.e., number

of columns)

10

2d - Dynamic Allocation I

3210

7654

111098

int** p

int*

int int int int

int** p; // vs int p[3][4];

11

2d - Dynamic Allocation II

int** p; // vs int p[3][4];

p = malloc(3*sizeof(int*));

if(p = NULL) error();

for(i=0; i<3; i++)

p[i] = malloc(4*sizeof(int));

p[i][j] = *(p[i] + j)

= *(*(p+i) + j)

To dereference:

more info: http://www.csc.liv.ac.uk/~frans/COMP101/AdditionalStuff/multiDarrays.html

12

Administrivia

• Lab 2 posted and due next Thursday 2/7, b/f

11am for sign-off

• Lab 3 available and due Thursday 2/14, 11am

• Project 1 posted and due Feb 24, Sun, b/f

midnight for submission

13

Structures: Building ADTs

• Points

� We can use a new Abstract Data Type (ADT) to define a point
in a plane, and the operations we perform on that point.

a

b

struct ptData { /* 1 */

double x;

double y;

};

struct ptData a, b, c[10];

14

Structures

struct ptData {/* 2 */

double x;

double y;

};

typedef struct ptData Point;

Point a, b, c[10];

• The following are all equivalent statements:

typedef struct {/* 3 */

double x;

double y;

} Point;

Point a, b, c[10];

struct ptData { /* 1 */

double x;

double y;

};

struct ptData a, b, c[10];

15

Structures

• We can use the statement
Point a, b;
to declare 2 variables of type Point

• We can refer to individual members of a
structure by name, eg

• This allows set a to

represent the Point (1, 1)
and b to represent (4, 5).

a.x = 1.0 ;

a.y = 1.0 ;

b.x = 4.0 ;

b.y = 5.0 ;

16

Structures

• Initialization

typedef struct {/* 3a */

double x;

double y;

} Point;

Point a = {1.0, 2.0};

Point b = {0.0, 1.1};

Point c, d[10];

17

Unions:

• are memory that contain a variety of objects over

time

• can be used to hold data of type character, integer,

double precision, or other C data types

• can only contain one of these types at any given

time

• its members share space, thus conserving memory

storage

• its members are accessed in the same manner as

structures

18

Union declarations are the same as struct declarations

union u_tag{

char cval;

int ival;

double dval;

} u;

int x = 3;

char y = ‘f’;

double pi = 3.1459;

u.ival = x;

u.cval = ‘f’;

u.dval = pi;

19

Valid Union Operations:

• Assignment to union of same type: =

• Taking the address: &

• Accessing union members: .

• Accessing members using pointers: ->

