C Programming Language:
C ADTs , 2d Dynamic Allocation

Math 230

Assembly Language Programming
(Computer Organization)

Thursday Jan 31, 2008

Overview

e Row major format
e | and 2-d dynamic allocation
e struct and union

Strings: Dynamic Allocation

/* malloc example: string generator*/
#include <stdio.h>
#include <stdlib.h>

int main ()
{
int i,n;
char * buffer;

printf ("How long do you want the string? ");
scanf ("%d", &i);

buffer = malloc (i+l);
if (buffer==NULL) exit (1);

for (n=0; n<i; n++)
buffer [n] =rand() 226+'a’ ;
buffer[i]='\0"';

printf ("Random string: %s\n",buffer);
free (buffer);

return O;

Dynamic Array Allocation, Addressing

e Recall that &a[0] ==a => a pointer constant

int a[20];
int* a;
a = malloc(ZO * sizeof(int));

e (C will do pointer math. Note:
(a+2) = &a[0] + 2*sizeof(a[0])

2-dimensional arrays

1=0

1=1

1=2

e For static array declaration: 3 rows, 4 cols

 What’s the equivalent declaration in pointer
notatton of int x[3][4]; ?

e How do you address x[1][3] via pointers?

Row-Major Format I

e Interpret [3][4] as 3 groups of 4-tuples

Row-Major Format II

Xo | X | x |x3 | xs x5 | x5 | %/

0 4

e The first index selects the 4-tuple (the set)
» X[1][2] = start @ absolute position 4

= move two places

e moves us to sixth position

Row-Major Format III

e [f the compiler knows it’s working with groups of 4, it can

determine the address of any element (based on indices, eg
x[2][1], x[1][3], etc.)

X[1][2] is located @ 1x4+2 bytes
from address of x[0][0]

Hence: x[1][]J]="(X+1xXn +])

where n is the row size (i.e., number
of columns)

2d - Dynamic Allocation I

int** p; // vs int p[3][4];

2d - Dynamic Allocation II

int** p; // vs int pl[3][4];
p = malloc(3*sizeof (int¥*));
if(p NULL) error();

for (i=0; i<3; i++)

pl[i] = malloc(4*sizeof (int));

plil[j] = *(p[i] + 3J)
= *(*(p+1i) + J)

11

more info: http://www.csc.liv.ac.uk/~frans/COMP 101/AdditionalStuff/multiDarrays.html

Administrivia

e Lab 2 posted and due next Thursday 2/7, b/t
1 lam for sign-off

e Lab 3 available and due Thursday 2/14, 11am
e Project 1 posted and due Feb 24, Sun, b/t

midnight for submission

Structures: Building ADTs

e Points

We can use a new Abstract Data Type (ADT) to define a point
in a plane, and the operations we perform on that point.

struct pthata { /* 1 */
double x;
double y;

};

struct ptData a, b, ¢[10];

Structures

e The following are all equivalent statements:

struct ptData {/* 2 */
struct ptData { /* 1 */
double x;
double x;
double vy;
double vy;

}s
typedef struct ptData Point;

};
struct ptData a, b, c[10];

Point a, b, c[10];

typedef struct {/* 3 */
double x;
double vy;

} Point;

Point a, b, c[10];

Structures

 We can use the statement
Point a, b;
to declare 2 variables of type Point

We can refer to individual members of a
structure by name, eg

This allows set a to

represent the Point (1, 1)
and b to represent (4, 5).

Structures

e Initialization
typedef struct {/* 3a */
double x;
double vy;
} Point;
Point a {1.0, 2.0},
Point b {0.0, 1.1},
Point c, d[10],;

Unions:

are memory that contain a variety of objects over
time

can be used to hold data of type character, integer,
double precision, or other C data types

can only contain one of these types at any given
time

1ts members share space, thus conserving memory
storage

1ts members are accessed 1n the same manner as
structures

Union declarations are the same as struct declarations

union u_tag({
char cval,;
int ival;
double dval;
} u;
int x
char y ;
double pi = 3.1459;

Il
I

W
h

u.ival
u.cval
u.dval = pi;

n
- N
. |-h ~e

Valid Union Operations:

Assignment to union of same type: =
Taking the address: &
Accessing union members: .

Accessing members using pointers: ->

