
C Programming Language:

C Strings and Dynamic Allocation

Math 230

Assembly Language Programming

(Computer Organization)

Tuesday Jan 29, 2008

Lecture 5

2

Overview

• C arrays

• C strings

• Dynamic Memory Allocation

3

Strings and Pointer Notation(I)

• To Create Character Strings

� Use an array of characters, or

� Define a char pointer

• //creates a pointer constant

• the address of message1 cannot be changed

• it always points to the first character in the array

• //creates a pointer to a char

char *message2;

char message1[81];

4

Strings and Pointer Notation (II)

� message1 = “this is a string”; //INVALID!!

� char message1[81] = “this is a string”; // valid

� string assignments are allowed

� message2=“this is a string”; // valid assignment

� Strings are null terminated, ie ‘\0’

char *message2;

char message1[81];

5

C String Standard Functions

int strlen(char *string);

� compute the length of string

int strcmp(char *str1, char *str2);

� return 0 if str1 and str2 are identical

� return –1 or +1 based on dictionary order (like java compareTo)

� How is this different from str1 == str2?

char *strcpy(char *dst, char *src);

� copy the contents of string src to the memory at dst. The
caller must ensure that dst has enough memory to hold the data

to be copied.

printf(" compare result is %d \n", strcmp("jae", "jim"));

6

Arrays of String

• An array of character pointers is quite useful for working

with an array of strings

� char *seasons[4];

• creates an array of four elements

• each element is a pointer to a character

• each pointer can be assigned to point to a string

char *seasons[4];

seasons[0] = “Winter”;

seasons[1] = “Spring”;

seasons[2] = “Summer”;

seasons[3] = “Fall”;

6

Arrays of String

• An array of character pointers is quite useful for working

with an array of strings

� char *seasons[4];

• creates an array of four elements

• each element is a pointer to a character

• each pointer can be assigned to point to a string

char *seasons[4];

seasons[0] = “Winter”;

seasons[1] = “Spring”;

seasons[2] = “Summer”;

seasons[3] = “Fall”;

char *seasons[4] = {

“Winter”,

“Spring”,

“Summer”,

“Fall”};

6

Arrays of String

• An array of character pointers is quite useful for working

with an array of strings

� char *seasons[4];

• creates an array of four elements

• each element is a pointer to a character

• each pointer can be assigned to point to a string

char *seasons[4];

seasons[0] = “Winter”;

seasons[1] = “Spring”;

seasons[2] = “Summer”;

seasons[3] = “Fall”;

char *seasons[4] = {

“Winter”,

“Spring”,

“Summer”,

“Fall”};
seasons[0]: Address of W

Address of S

Address of S

seasons[1]:

seasons[2]:

Address of Fseasons[2]:

7

Example

#include <stdio.h>

int main()

{

int n;

char *seasons[4] = {“Winter”,

“Spring”,

“Summer”,

“Fall”};

for(n=0; n<4; ++n)

printf(“\n The season is %s.”seasons[n]);

return 0;

}

8

Command-Line Arguments

• argc, argv

� main accepts two arguments: argc and argv

� argc is the number of arguments on the command

line

� The array argv contains the arguments with which

the program was invoked

� argv[0] is always the name of the executable

• See following example

int main(int argc, char *argv[])

{ . . .}

9

Code Example

• argc and argv

/* foo4.c: A program that displays command line arguments */

#include <stdio.h>

int main(int argc, char *argv[])

{

int i;

printf("\nThe following arguments were passed to main(): ");

for (i = 1; i < argc; i++)

printf("%s ", argv[i]);

printf("\n");

return 0;

}

10

Command-Line Arguments

If program foo4.exe were run with the command line:

C:\foo4 I really like eating

then argc and argv would contain:

• Also, note that since argv is an array of strings:

argc = 5

argv [0] = “foo4”

argv [1] = “I”

argv [2] = “really”

argv [3] = “like”

argv [4] = “eating”

argv [3] [0] = ‘ l ’

argv [3] [1] = ‘ i ’

argv [3] [2] = ‘ k ’

11

Memory Management Tools

12

Dynamic Memory Allocation

• Dynamic memory allocation

� the ability for a program to obtain more

memory space at execution time, and to

release space no longer needed

• malloc(), free(), and the operator

sizeof()

� essential to dynamic memory allocation

13

malloc()

• The function malloc() allocates storage for an

object

• malloc() takes one argument: the size of the item

to be allocated

• Memory used is taken from an area of memory

called “the heap” (or free store)

14

malloc()

• User must give the function an indication of the amount of memory space
it needs

• The user can request a specific number of bytes

• The user can request enough space for a certain type of data

• malloc(20 * sizeof(char))

� requests enough memory to store 20 characters

• malloc(sizeof(int))

� requests enough storage to store an integer

• Example:

� newPtr = malloc(sizeof(struct node));

15

malloc() – return value

• malloc()

� returns the address of the first byte of storage

reserved

• It returns a pointer (of type void*) to the allocated

space

� void* can be assigned to a variable of any pointer

type

• If no memory is available, malloc returns a NULL

pointer

Note: Older C code, some C++ compilers require you to cast the value
of malloc,i.e., (int*) malloc(). Not required with C99

16

free()

• Function free() deallocates memory

� it returns memory to the operating system

• To free the memory allocated in the previous

example:

� free(newPtr);

17

Code Example

18

Dynamic Memory Allocation

• We can make our programs more flexible if we allow the user to enter

from the command line the maximum desired number of elements

• Space can be allocated at runtime using library function malloc().

#include <stdlib.h>

main(int argc, char *argv[])

{ long int i, j, N = atoi(argv[1]);

int *a = malloc(N*sizeof(int));

if (a == NULL)

{ printf("Insufficient memory.\n"); return; }

...

#include <stdlib.h>

main(int argc, char *argv[])

{ long int i, j, N = atoi(argv[1]);

int *a = malloc(N*sizeof(int));

if (a == NULL)

{ printf("Insufficient memory.\n"); return; }

...

19

Strings: Dynamic Allocation

/* malloc example: string generator*/
#include <stdio.h>
#include <stdlib.h>

int main ()
{

int i,n;
char * buffer;

printf ("How long do you want the string? ");
scanf ("%d", &i);

buffer = malloc (i+1);
if (buffer==NULL) exit (1);

for (n=0; n<i; n++)
buffer[n]=rand()%26+'a';

buffer[i]='\0';

printf ("Random string: %s\n",buffer);
free (buffer);

return 0;
}

20

Dynamic Array Allocation, Addressing

int a[20];

• Recall that &a[0] == a => a pointer constant

• C will do pointer math. Note:

(a+2) ���� &a[0] + 2*sizeof(a[0])

int* a;

a = malloc(20 * sizeof(int));

