SECOND EDITION
THIE

@

PROGRAMMING
LANGUAGE

C Programming Languag
Arrays and Dynamic Allocation

Math 230

Assembly Language Programming
(Computer Organization)

Thu Jan 23, 2008

Lecture 4

[earning Objectives

Pointer Review, and call-by-reference

Array Names as Pointers

« Indirect referencing: Convert integer indexed
array notation to pointer notation

Pointer Arithmetic
= Use pointers vs indices for array processing
Passing and Using Array Addresses

« pointer declaration vs standard for formal
parameter

Dynamic Memory
- 1d, 2d

Easy Steps to Pointers

e Step I: Declare the variable to be pointed to

int num;
char ch = ‘A’;
float x;

num:

ch: ‘A

Easy Steps to Pointers (cont)

e Step 2: Declare the pointer variable

int num;
numPtr: NULL

char ch = ‘A’;
float x; chPtr: | NULL
int* numPtr = NULL; xPtr: | NULL
char *chPtr = NULL; '
float * xPtr = NULL;
num.:
ch: ‘A’

Easy Steps to Pointers (cont)

e Step 3: Assign address of variable to pointer

int num;

char c¢ch = ‘A’;
float x;

int* numPtr = NULL;,
char *chPtr = NULL;
float * xPtr = NULL;

numPtr:

chPtr:

xPtr:

num:

ch:

\AI

Easy Steps to Pointers (cont)

e Step 3: Assign address of variable to pointer

int num;

char c¢ch = ‘A’;
float x;

int* numPtr = NULL;
char *chPtr = NULL;
float * xPtr = NULL;

numPtr &num,

numPtr:

chPtr:

xPtr:

num:

ch:

\AI

Easy Steps to Pointers (cont)

e Step 3: Assign address of variable to pointer

int num, numPtr: LGS
char ch = ‘A’;
float x; chPtr:
int* numPtr = NULL;
char *chPtr = NULL; xXPtr:
float * xPtr = NULL;
numPtr = &num,

num:

ch: ‘A’

Easy Steps to Pointers (cont)

e Step 3: Assign address of variable to pointer

int num, numPtr: LGS
char ch = ‘A’;
float x; chPtr:
int* numPtr = NULL;
char *chPtr = NULL; xXPtr:
float * xPtr = NULL;
numPtr = &num,
chPtr = &ch; num:
ch: ‘A’

Easy Steps to Pointers (cont)

e Step 3: Assign address of variable to pointer

int num;

char c¢ch = ‘A’;
float x;

int* numPtr = NULL;
char *chPtr = NULL;
float * xPtr = NULL;

numPtr &num,
chPtr = &ch;

numPtr:

chPtr:

xPtr:

num:

ch:

addr of num

addr of ch

Easy Steps to Pointers (cont)

e Step 3: Assign address of variable to pointer

int num;

char c¢ch = ‘A’;
float x;

int* numPtr = NULL;
char *chPtr = NULL;
float * xPtr = NULL;
numPtr = &num,

chPtr = &ch;

xPtr = &x;

numPtr:

chPtr:

xPtr:

num:

ch:

addr of num

addr of ch

Easy Steps to Pointers (cont)

e Step 3: Assign address of variable to pointer

int num;

char c¢ch = ‘A’;
float x;

int* numPtr = NULL;
char *chPtr = NULL;
float * xPtr = NULL;
numPtr = &num,

chPtr = &ch;

xPtr = &x;

numPtr:

chPtr:

xPtr:

num:

ch:

addr of num

addr of ch

addr of x

Easy Steps to Pointers (cont)

e Step 3: Assign address of variable to pointer

+nt S numPtr:
char ch = ‘A’;

tloat x; chPtr:
int* numPtr = NULL;

char *chPtr = NULL; xXPtr:
float * xPtr = NULL;

numPtr = &num,

chPtr = &ch; num:
xPtr = &x;

A pointer’s type has to correspond to
the type of the variable it points to

addr of num

addr of ch

addr of x

Easy Steps to Pointers (cont)

e Step 4: De-reference the pointers

int num; e
char ch = ‘A’; numPtxr: PELEOE
float x;

chPtr: | Ll
int* numPtr = NULL;
char *chPtr = NULL; xPtr: addr of x
float * xPtr = NULL;
numPtr = #
chPtr = &ch; num:
XPtr = &Xx;

ch:

*xPtr = 0.25;
*numPtr = *chPtr;

Your Turn...

 Write a fragment of C code that does the ™

following:
- Declares 3 integer variables called a, b, and c.
- Declares 3 integer pointers pl, p2, and p3.
- Assigns the values 34, 10, and 4 to a, b, and c

- Initializes p1 with the addres of a and initializes p2
with the address of b

- Points p3 to the same 1tem pointed to by p2
- Prints out the contents pointed to by pl, p2 and p3

Pointers and Function Parameters

« Example : Function to swap the values of
two variables

1j>l j>2
swap
. 2 - 1

#include <stdio.h>

Bad swap

void swapl (int a, int b)

{
int tmp;

tmp = a;
a = b;

b = tmp;
return,;

}

int main|()

{

int x 1, v = 2;
swapl (x, y);
printf (“%d %d\n”,
return O;

Y);

#include <stdio.h>

Bad swap

void swapl (int a, int b)

{
int tmp;

tmp = a;
a = b;

b = tmp;
return,;

}

int main ()

{
int x =1, y = 2;

swapl (x, y);

printf (“%$d %d\n”, x, y);

return O;

Y-

#include <stdio.h>

Bad swap

void swapl (int a, int b)

{
int tmp;

tmp = a;
a = b;
b = tmp;
return;

}

int main ()

{

int x 1, v = 2;
swapl (x, y);
printf (“%d %$d\n”,
return O;

y);

tmp:

Y-

#include <stdio.h>

Bad swap

void swapl (int a, int b)

{
int tmp;

tmp = a;
a = b;

b = tmp;
return,;

}

int main ()

{

int x 1, v = 2;

swapl (x, y);

printf (“$d %d\n”, x, y);

return O;

tmp:

Y-

#include <stdio.h>

Bad swap

void swapl (int a, int b)

{
int tmp;

tmp = a;
a = b;

b = tmp;
return,;

}

int main ()

{

int x 1, v = 2;

swapl (x, y);

printf (“$d %d\n”, x, y);

return O;

tmp:

Y-

#include <stdio.h>

Bad swap

void swapl (int a, int b)

{
int tmp;

tmp = a;
a = b;

b = tmp;
return,;

}

int main ()

{

int x 1, v = 2;

swapl (x, y);

printf (“$d %d\n”, x, y);

return O;

tmp:

Y-

#include <stdio.h>

Bad swap

void swapl (int a, int b)

{

int tmp;
tmp = a;
a = b;
b = tmp;
return;
}
int main ()
{

int x =1, y = 2;

swapl (x, y);
printf (“%d %d\n”, x,
return O;

y);

tmp:

#include <stdio.h>

Bad swap

void swapl (int a, int b)

{ tmp:
int tmp;
a.
tmp = a;
a = b;
b = tmp; b:
return;
}
int main ()
{
int x =1, y = 2;
swapl (x, y);
printf (“%d %d\n”, x, y); y:

return O;

#include <stdio.h>

void swap2 (int* a, int* b)

{
int tmp;
tmp = *a;
*a = *Db;
*b = tmp;
return;

}

int main ()
{

int x =1, y = 2;

swap2 (&x, &y);

printf (“%d %d\n”, x, y);
return O;

#include <stdio.h>

Good swap

void swap2 (int* a, int* b)

{
int tmp;

tmp = *a;
*a = *b;
*b = tmp;
return;

}

int main ()

{
int x =1, y = 2;

swap2 (&x, &y);
printf (“%d %d\n”, x,
return O;

#include <stdio.h>

Good swap

void swap2 (int* a,

{
int tmp;

tmp = *a;
*a = *b;
*b = tmp;
return;

}

int main ()

{

int x = 1,

Y =
swap2 (&x, &y
printf (“sd %
return O;

) ;
d\n’

int* Db)

2;

tmp: | |

a’lmﬂ#ofxl

#include <stdio.h>

Good swap

void swap2 (int* a, int* b)

{
int tmp;

tmp = *a;
*a = *b;
*b = tmp;
return;

}

int main ()

{
int x =1, y = 2;

swap2 (&x, &y);
printf (“%d %d\n”, x,
return O;

tmp: | 1 |

a‘lznm#ofxl

#include <stdio.h>

Good swap

void swap2 (int* a, int* b)

{
int tmp;

tmp = *a;
*a = *b;
*b = tmp;
return;

}

int main ()

{
int x =1, y = 2;

swap2 (&x, &y);
printf (“%d %d\n”, x,
return O;

tmp: | 1 |

a‘lznm#ofxl

20

#include <stdio.h> Good swap

void swap2 (int* a, int* b)

{ . 1
int tmp; tmp'l |
tmp = *a; a: | addrofx |
*a = *Db;
*b = tmp;
return; |addr of y |
}
int main ()
{
int x = 1, y = 2;
x | 2 |
swap2 (&x, &y);
printf (“%d %d\n”, x, y); | |
1

return 0O;

21

#include <stdio.h>

Good swap

void swap2 (int* a, int* b)

{
int tmp;

tmp = *a;
*a = *b;
*b = tmp;
return;

}

int main ()

{
int x =1, y = 2;

swap2 (&x, &Yy);
printf (“%d %d\n”, x, y);
return O;

22

#include <stdio.h>

Good swap

void swap2 (int* a, int* b)

{
int tmp;

tmp = *a;
*a = *b;
*b = tmp;
return;

}

int main ()

{
int x =1, y = 2;

swap2 (&x, &Yy);
printf (“%d %d\n”, x, y);
return O;

22

Array Name as A Pointer

Array Name as A Pointer

e Pointers are closely associated with array names

Array Name as A Pointer

e Pointers are closely associated with array names
e Subscripts are related to the true address of an array
element

- The array element’s address is determined from the address of
the first element, and the size of the element

Array Name as A Pointer

Pointers are closely associated with array names
Subscripts are related to the true address of an array
element

- The array element’s address is determined from the address of
the first element, and the size of the element

Given grades[4], and that an integer is stored as four
bytes, the computer calculates the address as:

Array Name as A Pointer

Pointers are closely associated with array names

Subscripts are related to the true address of an array
element

- The array element’s address is determined from the address of
the first element, and the size of the element

Given grades[4], and that an integer is stored as four
bytes, the computer calculates the address as:

&grades[4] = &grades[0] + (4 * (4 bytes))

Array Name as A Pointer

Pointers are closely associated with array names
Subscripts are related to the true address of an array
element

- The array element’s address is determined from the address of
the first element, and the size of the element

Given grades[4], and that an integer is stored as four
bytes, the computer calculates the address as:

&grades[4] = &grades[0] + (4 * (4 bytes))

_/

address of first element
plus a 16 byte offset
(1 int = 4 bytes)

Pointer Arithmetic

grades[0]
grades|[1]
grades[2]

grades|[3]

Pointer Arithmetic

e Used to calculate the address of any array element

grades[0]
grades|[1]
grades[2]

grades|[3]

Pointer Arithmetic

Used to calculate the address of any array element

If each integer takes up 4 bytes of memory, the address of
grades[2] can be calculated from the address of

grades[0] plus 8

grades[0]
grades|[1]
grades[2]

grades|[3]

Pointer Arithmetic

e Used to calculate the address of any array element

e If each integer takes up 4 bytes of memory, the address of
grades[2] can be calculated from the address of

grades[0] plus 8

e The address of grades [3] is the address of grades[0]
plus 12

grades|[O0]
grades|[1]
grades[2]

grades|[3]

Using Pointers to Access Array Elements

 We can create a pointer to store the address of the first array
element

= an array of integers requires an int*

= an array of characters requires a char*

e This allows us to access any individual element in the array
using a pointer

Using Pointers to Access Array Elements

 We can create a pointer to store the address of the first array
element

an array of integers requires an int*

int myArray|[4];
int* arrPtr;
arrPtr = &myArray|[O0];

an array of characters requires a char*

e This allows us to access any individual element in the array
using a pointer

Using Pointers to Access Array Elements

 We can create a pointer to store the address of the first array
element

an array of integers requires an int*

int myArray|[4];
int* arrPtr;
arrPtr = &myArray|[O0];

an array of characters requires a char*

char myNames[20];
char* charPtr;
charPtr &myNames [0] ;

e This allows us to access any individual element in the array
using a pointer

Walk an array: conventional

Without using pointers

#include <stdio.h>

int main ()

{
int i;
int grades[] = {98, 87, 92, 79, 85};

for (i = 0; i <= 4; ++i){

printf ("\nElement %d is %d", i, grades[i]) ;

}

return O;

Walk an array: pointer based

Using pointers for array access

#include <stdio.h>

int main ()

{

int *gPtr;
int i;
int grades|[] = {98, 87, 92, 79, 85},

gPtr = &grades[0];
for (i = 0; i <= 4; ++i){
printf ("\nElement %d is %d", i, *(gPtr + i));

}

return O;

Walk an array: pointer based

Using pointers for array access

#include <stdio.h>

int main ()

{

int *gPtr; declare a pointer to an int

int i;
int grades|[] = {98, 87, 92, 79, 85},

gPtr = &grades[0];
for (i = 0; i <= 4; ++i){

printf ("\nElement %d is %d", i, *(gPtr + i));
}

return O;

Walk an array: pointer based

Using pointers for array access
#include <stdio.h>

int main ()

{

int *gPtr; declare a pointer to an int

int i;
int grades|[] = {98, 87, 92, 79, 85},

store the starting array address

gPtr = &grades[0];
for (i = 0; i <= 4; ++i){

printf ("\nElement %d is %d", i, *(gPtr + i));
}

return O;

Walk an array: pointer based

Using pointers for array access
#include <stdio.h>

int main ()

{

int *gPtr; declare a pointer to an int

int i;
int grades|[] = {98, 87, 92, 79, 85},

store the starting array address

gPtr = &grades[O0];
for (i = 0; i <= 4; ++1i) {

printf ("\nElement %d is %d", i, *(gPtr + i));
} (gPtr + 1) = &grades|[1]

return O;

Walk an array: pointer based

Using pointers for array access
#include <stdio.h>

int main ()

{

int *gPtr; declare a pointer to an int

int i;
int grades|[] = {98, 87, 92, 79, 85},

store the starting array address

gPtr = &grades[O0];
for (i = 0; i <= 4; ++1i) {

printf ("\nElement %d is %d", i, *(gPtr + i));
} (gPtr + 1) &grades|[1]

return O; (gPtr + 2) &grades|[2]

Walk an array: pointer based

Using pointers for array access
#include <stdio.h>

int main ()

{

int *gPtr; declare a pointer to an int

int i;
int grades|[] = {98, 87, 92, 79, 85},

store the starting array address

gPtr = &grades[O0];
for (i = 0; i <= 4; ++1i) {

printf ("\nElement %d is %d", i, *(gPtr + i));
} (gPtr + 1) &grades|[1]

return O; (gPtr + 2) &grades|[2]

(gPtr + 3) &grades[3]

Discussion on Examples — More Pointer Math

Discussion on Examples — More Pointer Math

 The second example, shows how the computer
internally accesses array elements

Discussion on Examples — More Pointer Math

 The second example, shows how the computer
internally accesses array elements

e Subscripts are automatically converted to their
equivalent pointer

Discussion on Examples — More Pointer Math

 The second example, shows how the computer
internally accesses array elements

e Subscripts are automatically converted to their
equivalent pointer
 The expression (gPtr + i) calculates the
address
- *(gPtr + i) 1sused to “dereference”

Discussion on Examples — More Pointer Math

 The second example, shows how the computer
internally accesses array elements

e Subscripts are automatically converted to their
equivalent pointer
 The expression (gPtr + i) calculates the
address
- *(gPtr + i) 1sused to “dereference”

* Note that we are using an integer value in the
addition

Discussion on Examples — More Pointer Math

The second example, shows how the computer
internally accesses array elements

Subscripts are automatically converted to their
equivalent pointer

The expression (gPtr + i) calculates the
address
- *(gPtr + i) 1sused to “dereference”

Note that we are using an integer value in the
addition

The offset added to gPtr 1s automatically scaled
- +1 =1 integer “jump” or
- +1 =1 float “jump” etc.

More Pointer Math and Array Equivalency

More Pointer Math and Array Equivalency

e Are the parentheses necessary in the
expression * (gPtr + 3)°?

More Pointer Math and Array Equivalency

e Are the parentheses necessary in the
expression * (gPtr + 3)°?

* Yes. Note the difference between:
* (gPtr + 3) and *gPtr+3

» BIG difference. The parentheses are required

More Pointer Math and Array Equivalency

e Are the parentheses necessary in the
expression * (gPtr + 3)°?

* Yes. Note the difference between:
* (gPtr + 3) and *gPtr+3

» BIG difference. The parentheses are required

e Finally, the expression grades[i] can
always be replaced with * (grades + i)

Pointer Constants: Array Names

Pointer Constants: Array Names

Assume the following declarations have been made:

Pointer Constants: Array Names

Assume the following declarations have been made:
int a[l0];

Pointer Constants: Array Names

Assume the following declarations have been made:
int a[l0];

int *pa;

Pointer Constants: Array Names

Assume the following declarations have been made:
int a[l0];
int *pa;

Important difference between an array name and a pointer variable:

Pointer Constants: Array Names

Assume the following declarations have been made:
int a[l0];
int *pa;
Important difference between an array name and a pointer variable:

A pointer 1s a variable so it’s legal to use
pa = a;

pat+;

Pointer Constants: Array Names

Assume the following declarations have been made:
int a[l0];
int *pa;
Important difference between an array name and a pointer variable:
A pointer 1s a variable so it’s legal to use
pa = a;

. pat+;

An array name 1s a constant, not a variable. usage
a = pa; //Incompatible types int* and int|[5]
a++; //Not allowed
pa = &a[0]; //Both types must be same

Pointer Constants

Pointer Constants

 When arrays are created, an internal “pointer
constant” 1s automatically created

Pointer Constants

 When arrays are created, an internal “pointer
constant” 1s automatically created

e This pointer constant stores the starting address of
the array, 1.e., the first element

Pointer Constants

When arrays are created, an internal “pointer
constant” 1s automatically created

This pointer constant stores the srarting address of
the array, 1.e., the first element

What happens when an array 1s declared?

1. The array name becomes the name of a pointer
constant

2. The first array element 1s stored at the pointer’s
address

3. Storage 1s created for the appropriate number of the
indicated variable type

Init’z as array, work as pointer

#include <stdio.h>
int main ()

{
int i;
int grades[] = {98, 87, 92, 79, 85};

for (i = 0; i <= 4; ++i)
printf ("\nElement %d is %d", i, *(grades + i));

return O;

Init’z as array, work as pointer
A c‘constant’ pointer

#include <stdio. named grades is

int main () automatically
{ generated

int i;
int grades[] = {98, 87, 92, 79, 85};

for (i = 0; 1 <= 4; ++1i)
printf ("\nElement %d is %d", i, *(grades + i));

return O;

Init’z as array, work as pointer

A ‘constant’ pointer
#include <stdio. named grades is

int main () automatically Pointer notation
{ generated used although no

explicit pointer

int 1; declared!

int grades[] = {98, 87, 92, 79, 85};

for (i = 0; 1 <= 4; ++1i)

printf ("\nElement %d is %d", i, *(grades + i));

return O;

Pointer Arithmetic — Marching Through Arrays

e You can use pointers to index through arrays by
pointing to each element in turn

e Given that p points to wilma[i], p + k points to
wilmal[i + k]
int wilma[4], i, *p, x;

wilma[4]={21, 9, 19, 6};

&wilma[O];
*p;

* (p+1) ;

p + 1;

Pointer Arithmetic — Marching Through Arrays

e You can use pointers to index through arrays by
pointing to each element in turn

e Given that p points to wilma[i], p + k points to
wilmal[i + k]
int wilma[4], i, *p, x;

wilma[4]={21, 9, 19, 6};

&wilma[0]; address of wilma[0] assigned to p
*P;

*(ptl);

p + 1;

Pointer Arithmetic — Marching Through Arrays

e You can use pointers to index through arrays by
pointing to each element in turn

e Given that p points to wilma[i], p + k points to
wilmal[i + k]
int wilma[4], i, *p, x;

wilma[4]={21, 9, 19, 6};

&wilma[0]; address of wilma[0] assigned to p
*p; wilma[0] is assigned to x

*(pt+l);

p+1;

Pointer Arithmetic — Marching Through Arrays

e You can use pointers to index through arrays by
pointing to each element in turn

e Given that p points to wilma[i], p + k points to
wilmal[i + k]
int wilma[4], i, *p, x;

wilma[4]={21, 9, 19, 6};

&wilma[0]; address of wilma[0] assigned to p
*p; wilma[0] is assigned to x
* (p+1) ; wilma[l] is assigned to x

p + 1;

Pointer Arithmetic — Marching Through Arrays

e You can use pointers to index through arrays by
pointing to each element in turn

e Given that p points to wilma[i], p + k points to
wilmal[i + k]
int wilma[4], i, *p, x;

wilma[4]={21, 9, 19, 6};

&wilma[0]; address of wilma[0] assigned to p
*p; wilma[0] is assigned to x
* (p+1) ; wilma[l] is assigned to x

p + 1; &wilma[l] is assigned to p

Pointer Arithmetic — Marching Through Arrays

e You can use pointers to index through arrays by
pointing to each element in turn

e Given that p points to wilma[i], p + k points to
wilmal[i + k]
int wilma[4], i, *p, x;

wilma[4]={21, 9, 19, 6};

&wilma[0]; address of wilma[0] assigned to p
*p; wilma[0] is assigned to x

* (p+1) ; wilma[l] is assigned to x

p + 1; &wilma[l] is assigned to p

p now points to wilma[2]

Marching Through Arrays — an example

e ‘**p++ can be used to walk through the array pointed to by p

e Given int wilma[4], i,*p, x;

« The same output 1s achieved by both of the following

Marching Through Arrays — an example

e ‘**p++ can be used to walk through the array pointed to by p

e Given int wilma[4], i,*p, x;

« The same output 1s achieved by both of the following

= wilma;
for (1 = 0; 1 < 4; i++)

printf (“$d\n”, *p++);

Marching Through Arrays — an example

e ‘**p++ can be used to walk through the array pointed to by p

e Given int wilma[4], i,*p, x;
« The same output 1s achieved by both of the following

= wilma;
for (1 = 0; 1 < 4; i++)

printf (“$d\n”, *p++);

for (1 = 0; 1 < 4; i++)

printf (“%d\n”, wilmal[i]);

Array Marching — Stop Based on Address

#include <stdio.h>
int main()

{
int nums[5] {16, 54, 7, 43, -5};
int total = 0, *nPtr;

nPtr = nums;

while (nPtr <= nums + 4)
total += *nPtr++;

printf ("The total of the array elements is %d", total);

return O;

Array Marching — Stop Based on Address

#include <stdio.h>
int main()

{
int nums[5] {16, 54, 7, 43, -5};
int total = 0, *nPtr;

nPtr = nums; store address of nums[0] in nPtr

while (nPtr <= nums + 4)
total += *nPtr++;

printf ("The total of the array elements is %d", total);

return O;

Array Marching — Stop Based on Address

#include <stdio.h>

int main()

{

int nums[5] {16, 54, 7, 43, -5};
int total = 0, *nPtr;

nPtr = nums; store address of nums[0] in nPtr

while (nPtr <= nums + 4) compare addresses
total += *nPtr++;

printf ("The total of the array elements is %d", total);

return O;

Functions, Pointers and Using Array Addresses

e The array address 1s the only actual item
passed

- What constitutes an array’s address?

e The following examples study the passing of
arrays and pointers

findMax routine

int findMax(int wvals[], int numEls)
{

int i, max = vals|[0];
for (1 = 1; i < numEls; ++i)
if (max < vals[i])

max = vals[i];

return (max) ;

pgm 8.6¢ findMax routine-changes

— int wvals|[]

int findMax (int , int numEls)

{

int i, max = ;

++1)

max

for (i 1;

if (max <)

i1 < numEls;

max

\

return (max) ; max

&vals[0]

vals[i]

