More Number Representation, C
. B e
Programming Language Overview

@

PROGRAMMING
LANGUAGE

Math 230
Assembly Language Programming
(Computer Organization)

Lecture 3

Operations with Numbers

What things can we do with numbers?
- Add
- Subtract
- Multiply
- Divide
- Compare

Addition

- can easily build a circuit to do it!
Subtraction

- can we use the circuitry for addition?
Comparison

- How can you tell if one number is larger than
another?

Bits Can Represent Anything

Colors, music, text,video, texture, smell
We can quantize anything

Characters
26 letters => 5 bits
upper + lowercase+ punctuations => 7 bits (ASCII)
to cover all world’s various alphabets
e =>8, 16, 32 bits (“Unicode”)
Logical Values
0 = false
I = true
Colors
using red, blue, and yellow we can represent a wide range of colors
using paint
Locations/Addresses/Commands
Memorize: N bits € - 2N things

Negative Numbers

e So far, only positive numbers?

e Consider:

- Borrow most significant bit and call 1t a
sign bit

How to Represent Negative Numbers?

So far, unsigned numbers
Obvious solution: define leftmost bit to be sign!
0=+, 1 = -
= Rest of bits can be numerical value of number
Representation called sign and magnitude
MIPS uses 32-bit integers. +1... would be:

ten

0000 0000 0000 0000 0000 0000 0000 0001

And -1, 1n sign and magnitude would be:

ten

1000 0000 0000 0000 0000 0000 0000 0001

Shortcomings of sign and magnitude?

e Arithmetic circuit complicated

« Special steps depending whether signs are
the same or not

e Also, two zeros
- 0x00000000 = +0

- 0x80000000 = -0
» What would two Os mean for programming?

ten

ten

e Therefore sign and magnitude abandoned

Another try: complement the bits

* Example: 7,,=00111, —7,,=11000,

e Called One’s Complement

e Note: positive numbers have leading Os, negative
numbers have leadings 1s.

00000 00001 .. O1111

-
10000 ... 11110 11111

 What 1s -00000 ? Answer: 11111
 How many positive numbers in N bits?

 How many negative numbers?

Shortcomings of One’s complement?

* Arithmetic still somewhat complicated.

e Still two zeros
O0x00000000 =+0

OxXFFFFEFEFFE = -0

e Although used for awhile on some computer
products, one’s complement was eventually
abandoned because another solution was
better.

ten

ten

Standard Negative Number Representation

e What 1s result for unsigned numbers if tried to
subtract large number Trom a small one?

- Would try to borrow from string of leading Os,
so result would have a string of leading 1s
= 3-4=00...00IT-00...0100 =11...1111

- With no obvious better alternative, pick representation
that made the hardware simple

» As with sign and magnitude,
leading Os = positive, leading 1s = negative
= (000000..xxx 1s>0, 111111..xxx1s<0
= except 1...11111s -1, not -0 (as in sign & mag.)

 This representation 1s Two’s Complement

2’s Complement Number “line”: N =5

11111 90900 " 50001

N-1)
11110 oo010 ° 2 hon
11101 negatives

o 2N-I'negatives

* how many
positives?

00000 00001

10000 .. 11110 11111

Two’s Complement for N=32

0000 ... 0000 0000 0000 0000, =
0000 ... 0000 0000 0000 0001
0000 ... 0000 0000 0000 0010

0
|
2

ten

two ten

two ten

O111 ... 1111 1111 1111 1101
O111 ... 1111 1111 1111 1110
O111 ... 1111 1111 I111 1111
1000 ... 0000 0000 0000 0000
1000 ... 0000 0000 0000 0001
1000 ... 0000 0000 0000 0010

2,147,483,645
2,147,483,646
2,147,483,647
—2,147,483,648
—2,147,483,647
—2,147,483,646

[A%0) ten

two ten
two ten
two ten

two ten

two ten

1111 .. 1111 1111 1111 1101
1111 . 1111 1111 1111 1110
1111 .. 1111 1111 1111 1111

. One zero; 1st bit called sign bit
e | “extra” negative:no positive 2,147,483,648

two

two

two

ten

Two’s Complement Formula

e Can represent positive and negative numbers 1n
terms of the bit value times a power of 2:

dy x-(2°Y) +dyyx 2%+ ... +d,x22+d,; x 2 +dyx 2Y
 Example: 1101,
= 1x-(23) + 1x2%+ 0x2' + 1x2Y
=-2°+22+0+2°
=-8+4+0+1
-8+ 5
=-3

ten

Two’s Complement Formula

e Can represent positive and negative numbers 1n
terms of the bit value times a power of 2:

d;, X @ dyyx 2%+ ... +d,x2%+d, x 2 +d,x 2°
 Example: 1101,,,
= 1x-(23) + 1x2%+ 0x2' + 1x2Y
=-2°+22+0+2°
=-8+4+0+1
-8+ 5
=-3

ten

Two’s Complement shortcut: Negation

Two’s Complement shortcut: Negation

e Change every O to 1 and 1 to O (invert or
complement), then add 1 to the result

Two’s comp. shortcut: Sign extension

e Convert 2’s complement number rep. using n
bits to more than n bits

e Sumply replicate the most significant bit (sign
bit) of smaller to fill new bits
» 2°s comp. positive number has infinite Os
» 2’s comp. negative number has infinite 1s

- Binary representation hides leading bits;
sign extension restores some of them

= 16-bit -4, to 32-bit:

ten

IT1T 1111 1111 1100
IT1T 1111 1111 1111 1111 1111 1111 1100

two

two

14

Number summary...
We represent “things” in computers as particular bit patterns: N bits =
IN

Decimal for human calculations, binary for computers, hex to write
binary more easily

1’s complement - mostly abandoned

00000 00001 .. O1111

— e e
10000 ... 11110 11111

2’s complement universal in computing: cannot avoid, so learn

00000 00001 ... O1111

— e e
10000 ... 11110 11111

e Opverflow: numbers «; computers finite,errors!

C Overview

Systems software
» Unix, Linux, MacOSX

Small Language

Standardized C Preprocessor
for

« macro def
« source code file inclusion
« conditional compilation

gcc can cross compile to
MIPS et al

SECOND EDITION

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

ANSI C

e K&R was the informal “spec” for many years
: K&R C

. 2" edition covers ANSI C std
e ANSI: Superset of K&R C
e After K&R published

» void functions

« functions returning st ruct or union
- assignment for struct

- const qualifier

int main(argc, argv) _ _ _ N
int arge: int main (int argc, char* argv|[])

char* argv]|]; t. ..}
{ . . . 1}

C99

inline functions

- eliminate function call; expand inline
variables declared anywhere
New data types

- long long 1nt

- boolean data type

- complex types for complex numbers

Header files added, notably
» <stdbool.h>
» <tgmath.h> type generic math functions

gcc not fully compliant
(http://gcc.gnu.org/c99status.html)

Standard Headers

<assert.h>

<complex.h>

<ctype.h>
<errno.h>
<fenv.h>
<float.h>
<inttypes.h>
<150646.h>
<limits.h>
<locale.h>
<math.h>
<setymp.h>

<signal.h>
<stdarg.h>
<stdbool.h>
<stddef.h>
<stdint.h>
<stdio.h>
<stdlib.h>
<string.h>
<tgmath.h>
<time.h>
<wchar.h>
<wctype.h>

C vs Java

C
Relatively Fast
Procedural
Platform Dependent
Arrays initialize to garbage
Small libraries
Small executable
X.c => X.exe Or x.out
Preprocessor
No memory management
Pointers

Java
Relatively Slow
0]0)%
Platform Independent
Arrays initialize to zero
Huge libraries
Larger runnable files
x.java => x.class
No preprocessor
Garbage Collections
No global variables
Variable Declarations

C Syntax: variable declaration

e Similar to Java

 ANSI requires declarations to go at start
of block

- Java allows anywhere

C Syntax

e Java has booleans to represent true/talse

 C has nonzeroes which evaluate to
“true,,

= false
 1f(0)... //always false
e if (NULL) ...//always false
e 1f(°0’) ...//always true

C Syntax: Flow Control

e Decision structures of C almost identical
to Java.

« 1f-else

» switch

- while and for
» do- while

Memory: Conceptual

e Think of memory as one HUGE array

- we will talk about how a “2D” array
maps onto one linear space

* Each cell can be “addresed”
» Address signed or unsigned?

 Commonly work with reference-type
variables, 1.e., pointers

Pointers

Memory Address of a Variable

Memory Address of a Variable

char ch = "A’;

29

Memory Address of a Variable

char ch = "A’;

ch:

/ /
0x2000 A

Memory Address of a Variable

char ch = "A’;
ch:
/ /
0x2000 A
NS

\

The value of the
variable ch

Memory Address of a Variable

char ch = "A’;

ch:

/ /
0x2000 A

A TX

The memory
address of the
variable ch

The value of the
variable ch

The & Operator

e Gives the memory address of an object

The & Operator

e Gives the memory address of an object

char ch = "A’;

0x2000 "A'

The & Operator

e Gives the memory address of an object

char ch = "A’;

0x2000 "A'

&ch yields the value 0x2000

The & Operator

e Gives the memory address of an object

char ch = "A’;

0x2000 "A'

&ch yields the value 0x2000

e Also known as the *““address operator”™

30

Example:

char ch;

printf (“Sp”,

&ch) ;

31

Example:

char ch;

printf (“3p”, &ch);

A

“conversion specifier” for
printing a memory address

31

Pointers

Ox1FFE Ox1FFF 0x2000 0x2001 0x2002

A/ etc

ch 2

Pointers

Ox3A15

0x2000

chPtr

Ox1FFE Ox1FFF 0x2000 0x2001 0x2002

A/ etc

ch 2

Pointers

A variable which can store
the memory address of
another variable

0x2000

chPtr

Ox1FFE Ox1FFF 0x2000 0x2001 0x2002

A/ etc

ch 2

Pointers

33

Pointers

e A pointer 1s a variable which...
- Contains a memory address

- Points to a specific data type

33

Pointers

e A pointer 1s a variable which...
- Contains a memory address

- Points to a specific data type

e Pointer variables are usually named
varPtr

33

Example:

cPtr:

char* cPtr;

0x2004

34

Example:

char* cPtr;
cPtr:

0x2004

A

/

Can store an address of
variables of type char

34

Example:

char* cPtr;
cPtr:

0x2004

A

/

Can store an address of
variables of type char

 We say cPtris a pointer to a character

34

Pointers and the & Operator

Example:

Pointers and the & Operator

Example:

char ¢ = "A’;

35

Pointers and the & Operator

Example:

char ¢ = "A’;

A

0x2000

Pointers and the & Operator

Example:

char ¢ = "A’;

char *cPtr;

A

0x2000

Pointers and the & Operator

Example:

char ¢ = "A’;

char *cPtr;

C: cPtr:

A

0x2000 0x2004

Pointers and the & Operator

Example:
char ¢ = "A’;
char *cPtr;
cPtr = &c;
C: cPtr:
A

0x2000 0x2004

Pointers and the & Operator

Example:
char ¢ = "A’;
char *cPtr;
cPtr = &c; Assigns the
address of ¢ to cPtr
C: cPtr:

A

0x2000 0x2004 35

Pointers and the & Operator

Example:
char ¢ = "A’;
char *cPtr;
cPtr = &c; Assigns the
address of ¢ to cPtr
C: cPtr:

A 0x2000

0x2000 0x2004 35

Pointers and the & Operator

Example:
char ¢ = "A’;
char *cPtr;
cPtr = &c; Assigns the
address of ¢ to cPtr
C: cPtr:

A 0x2000

0x2000 0x2004 35

Notes on Pointers

36

Notes on Pointers

 We can have pointers to any data type

Example: int* numPtr;
float* xPtr;

36

Notes on Pointers

 We can have pointers to any data type

Example: int* numPtr;
float* xPtr;

e The * can be anywhere between the
type and the variable

Example: int *numPtr;
float * xPtr;

36

Notes on Pointers (cont)

37

Notes on Pointers (cont)

* You can assign the address of a variable to a
“compatible” pointer using the & operator

int aNumber;

int *numPtr;
Example:

numPtr = &aNumber;

37

Notes on Pointers (cont)

* You can assign the address of a variable to a
“compatible” pointer using the & operator

int aNumber;

int *numPtr;
Example:

numPtr = &aNumber;

* You can print the address stored 1n a pointer
using the $p conversion specifier

Example: printf (“$p”, numPtr); .

Notes on Pointers (cont)

int

*numPtr;

?27?

numPtr

38

Notes on Pointers (cont)

Beware of pointers

int *numPtr; which are not
initialized!

?27?

numPtr

38

Notes on Pointers (cont)

Beware of pointers

int *numPtr; which are not
initialized!

numPtr

38

Notes on Pointers (cont)

* When declaring a pointer, it 1s a good
1dea to always initialize 1t to NULL

(a special pointer constant)

int *numPtr

NULL;

NULL
numPtr

The * Operator

The * Operator

* Allows pointers to access variables they
point to

40

The * Operator

* Allows pointers to access variables they
point to

e Also known as “dereferencing operator”

40

The * Operator

* Allows pointers to access variables they
point to

e Also known as “dereferencing operator”

e Should not be confused with the * 1n the
pointer declaration

40

Pointers and the * Operator

Example:

& 0x2004 ’

41

Pointers and the * Operator

Example: char ¢ = 'A’;

& 0x2004 ’

41

Pointers and the * Operator

Example: char ¢ = 'A’;

0x2000 & 0x2004]

41

Pointers and the * Operator

Example: char ¢ = 'A’;

char *cPtr = NULL;

0x2000 & 0x2004]

41

Pointers and the * Operator

Example: char ¢ = 'A’;

char *cPtr = NULL;

C: cPtr:

A NULL

0x2000 & 0x2004]

Pointers and the * Operator

Example: char ¢ = 'A’;
char *cPtr = NULL;

cPtr = &c;

C: cPtr:

A NULL

0x2000 & 0x2004]

Pointers and the * Operator

Example: char ¢ = 'A’;
char *cPtr = NULL;

cPtr = &c;

C: cPtr:

A 0x2000
0x2000 & 0x2004 ’

41

Pointers and the * Operator

Example: char ¢ = 'A’;
char *cPtr = NULL;
cPtr = &c;
*cPtr = 'B’;
C: cPtr:
A 0x2000

0x2000

& 0x2004 ’

41

Pointers and the * Operator

Example: char ¢ = 'A’;

char *cPtr = NULL;

Changes the value of

cPtr = &c; the variable which
*cPtr = 'B’; cPtr points to
C: cPtr:
A 0x2000

0x2000 & 0x2004] 41

Pointers and the * Operator

Example: char ¢ = 'A’;

char *cPtr = NULL;

Changes the value of

cPtr = &c; the variable which
*cPtr = 'B’; cPtr points to
C: cPtr:
B 0x2000

0x2000 & 0x2004] 41

I .essons

* A pointer 1s stmply a variable that
contains an address

42

