
More Number Representation, C

Programming Language Overview

Math 230

Assembly Language Programming

(Computer Organization)

Lecture 3

2

Operations with Numbers

• What things can we do with numbers?

� Add

� Subtract

� Multiply

� Divide

� Compare

• Addition

� can easily build a circuit to do it!

• Subtraction

� can we use the circuitry for addition?

• Comparison

� How can you tell if one number is larger than
another?

3

Bits Can Represent Anything

• Colors, music, text,video, texture, smell

� We can quantize anything

• Characters

� 26 letters => 5 bits

� upper + lowercase+ punctuations => 7 bits (ASCII)

� to cover all world’s various alphabets

• => 8, 16, 32 bits (“Unicode”)

• Logical Values

� 0 = false

� 1 = true

• Colors

� using red, blue, and yellow we can represent a wide range of colors
using paint

• Locations/Addresses/Commands

� Memorize: N bits � � 2N things

4

Negative Numbers

• So far, only positive numbers?

• Consider:

� Borrow most significant bit and call it a

sign bit

5

How to Represent Negative Numbers?

• So far, unsigned numbers

• Obvious solution: define leftmost bit to be sign!

� 0 ⇒ +, 1 ⇒ –

� Rest of bits can be numerical value of number

• Representation called sign and magnitude

• MIPS uses 32-bit integers. +1ten would be:

0000 0000 0000 0000 0000 0000 0000 0001

• And –1ten in sign and magnitude would be:

1000 0000 0000 0000 0000 0000 0000 0001

6

Shortcomings of sign and magnitude?

• Arithmetic circuit complicated

� Special steps depending whether signs are
the same or not

• Also, two zeros

� 0x00000000 = +0ten

� 0x80000000 = –0ten

� What would two 0s mean for programming?

• Therefore sign and magnitude abandoned

7

Another try: complement the bits

• Example: 710 = 001112 –710 = 110002

• Called One’s Complement

• Note: positive numbers have leading 0s, negative

numbers have leadings 1s.

00000 00001 01111...

111111111010000 ...

• What is -00000 ? Answer: 11111

• How many positive numbers in N bits?

• How many negative numbers?

8

Shortcomings of One’s complement?

• Arithmetic still somewhat complicated.

• Still two zeros

� 0x00000000 = +0ten

� 0xFFFFFFFF = -0ten

• Although used for awhile on some computer
products, one’s complement was eventually
abandoned because another solution was
better.

9

Standard Negative Number Representation

• What is result for unsigned numbers if tried to
subtract large number from a small one?
� Would try to borrow from string of leading 0s,

so result would have a string of leading 1s
� 3 - 4 ⇒ 00…0011 – 00…0100 = 11…1111

� With no obvious better alternative, pick representation
that made the hardware simple

� As with sign and magnitude,
leading 0s ⇒ positive, leading 1s ⇒ negative

� 000000...xxx is ≥ 0, 111111...xxx is < 0

� except 1…1111 is -1, not -0 (as in sign & mag.)

• This representation is Two’s Complement

10

2’s Complement Number “line”: N = 5

• 2N-1 non-
negatives

• 2N-1 negatives

• one zero

• how many
positives?

00000
00001

00010

11111

11110

10000 0111110001

0 1
2

-1
-2

-15 -16 15

.

.

.

.

.

.

-3

11101

-4
11100

00000 00001 01111...

111111111010000 ...

11

Two’s Complement for N=32

0000 ... 0000 0000 0000 0000two = 0ten

0000 ... 0000 0000 0000 0001two = 1ten

0000 ... 0000 0000 0000 0010two = 2ten

. . .
0111 ... 1111 1111 1111 1101two = 2,147,483,645ten

0111 ... 1111 1111 1111 1110two = 2,147,483,646ten

0111 ... 1111 1111 1111 1111two = 2,147,483,647ten

1000 ... 0000 0000 0000 0000two = –2,147,483,648ten

1000 ... 0000 0000 0000 0001two = –2,147,483,647ten

1000 ... 0000 0000 0000 0010two = –2,147,483,646ten

. . .
1111 ... 1111 1111 1111 1101two = –3ten

1111 ... 1111 1111 1111 1110two = –2ten

1111 ... 1111 1111 1111 1111two = –1ten

• One zero; 1st bit called sign bit

• 1 “extra” negative:no positive 2,147,483,648ten

12

Two’s Complement Formula

• Can represent positive and negative numbers in
terms of the bit value times a power of 2:

d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20

• Example: 1101two

= 1x-(23) + 1x22 + 0x21 + 1x20

= -23 + 22 + 0 + 20

= -8 + 4 + 0 + 1

= -8 + 5

= -3ten

12

Two’s Complement Formula

• Can represent positive and negative numbers in
terms of the bit value times a power of 2:

d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20

• Example: 1101two

= 1x-(23) + 1x22 + 0x21 + 1x20

= -23 + 22 + 0 + 20

= -8 + 4 + 0 + 1

= -8 + 5

= -3ten

13

Two’s Complement shortcut: Negation

13

Two’s Complement shortcut: Negation

•Change every 0 to 1 and 1 to 0 (invert or

complement), then add 1 to the result

14

Two’s comp. shortcut: Sign extension

• Convert 2’s complement number rep. using n
bits to more than n bits

• Simply replicate the most significant bit (sign
bit) of smaller to fill new bits

� 2’s comp. positive number has infinite 0s

� 2’s comp. negative number has infinite 1s

� Binary representation hides leading bits;
sign extension restores some of them

� 16-bit -4ten to 32-bit:

1111 1111 1111 1100two

1111 1111 1111 1111 1111 1111 1111 1100two

16

Number summary...
• We represent “things” in computers as particular bit patterns: N bits ⇒

2N

• Decimal for human calculations, binary for computers, hex to write
binary more easily

• 1’s complement - mostly abandoned

• 2’s complement universal in computing: cannot avoid, so learn

• Overflow: numbers ∞; computers finite,errors!

00000 00001 01111...

111111111010000 ...

00000 00001 01111...

111111111010000 ...

17

C Overview

• Systems software

� Unix, Linux, MacOSX

• Small Language

• Standardized C Preprocessor
for

� macro def

� source code file inclusion

� conditional compilation

• gcc can cross compile to
MIPS et al

18

ANSI C

• K&R was the informal “spec” for many years

� K&R C

� 2nd edition covers ANSI C std

• ANSI: Superset of K&R C

• After K&R published

� void functions

� functions returning struct or union

� assignment for struct

� const qualifier

int main(int argc, char* argv[])

{ . . .}

int main(argc, argv)

int argc;

char* argv[];

{ . . . }

19

C99

• inline functions

� eliminate function call; expand inline

• variables declared anywhere

• New data types

� long long int

� boolean data type

� complex types for complex numbers

• Header files added, notably

� <stdbool.h>

� <tgmath.h> type generic math functions

• gcc not fully compliant
(http://gcc.gnu.org/c99status.html)

20

Standard Headers

<signal.h>

<stdarg.h>

<stdbool.h>

<stddef.h>

<stdint.h>

<stdio.h>

<stdlib.h>

<string.h>

<tgmath.h>

<time.h>

<wchar.h>

<wctype.h>

<assert.h>

<complex.h>

<ctype.h>

<errno.h>

<fenv.h>

<float.h>

<inttypes.h>

<iso646.h>

<limits.h>

<locale.h>

<math.h>

<setjmp.h>

22

C vs Java

Java

Relatively Slow

OOP

Platform Independent

Arrays initialize to zero

Huge libraries

Larger runnable files

x.java => x.class

No preprocessor

Garbage Collections

No global variables

Variable Declarations

C

Relatively Fast

Procedural

Platform Dependent

Arrays initialize to garbage

Small libraries

Small executable

x.c => x.exe or x.out

Preprocessor

No memory management

Pointers

23

C Syntax: variable declaration

• Similar to Java

• ANSI requires declarations to go at start

of block

� Java allows anywhere

24

C Syntax

• Java has booleans to represent true/false

• C has nonzeroes which evaluate to

“true”

� false

• if(0)… //always false

• if (NULL) …//always false

• if(‘0’) …//always true

25

C Syntax: Flow Control

• Decision structures of C almost identical

to Java.

� if-else

� switch

� while and for

� do- while

27

Memory: Conceptual

• Think of memory as one HUGE array

� we will talk about how a “2D” array

maps onto one linear space

• Each cell can be “addresed”

� Address signed or unsigned?

• Commonly work with reference-type

variables, i.e., pointers

28

Pointers

29

Memory Address of a Variable

29

Memory Address of a Variable

char ch = ’A’;

29

Memory Address of a Variable

char ch = ’A’;

’A’0x2000

ch:

29

Memory Address of a Variable

char ch = ’A’;

’A’0x2000

ch:

The value of the
variable ch

29

Memory Address of a Variable

char ch = ’A’;

’A’0x2000

ch:

The value of the
variable ch

The memory

address of the
variable ch

30

The & Operator

• Gives the memory address of an object

30

The & Operator

• Gives the memory address of an object

char ch = ’A’;

’A’0x2000

30

The & Operator

• Gives the memory address of an object

char ch = ’A’;

’A’0x2000

&ch yields the value 0x2000

30

The & Operator

• Gives the memory address of an object

char ch = ’A’;

’A’0x2000

&ch yields the value 0x2000

• Also known as the “address operator”

31

char ch;

printf(“%p”, &ch);

Example:

31

char ch;

printf(“%p”, &ch);

Example:

“conversion specifier” for

printing a memory address

printf(“%p”, &ch);

32

Pointers

ch

0x1FFF 0x2000 0x2001 0x20020x1FFE

etc‘A’

32

Pointers

ch

0x1FFF 0x2000 0x2001 0x20020x1FFE

etc‘A’

0x2000

chPtr

0x3A15

32

Pointers

ch

0x1FFF 0x2000 0x2001 0x20020x1FFE

etc‘A’

0x2000

chPtr

0x3A15

A variable which can store

the memory address of

another variable

33

Pointers

33

Pointers

• A pointer is a variable which…

� Contains a memory address

� Points to a specific data type

33

Pointers

• A pointer is a variable which…

� Contains a memory address

� Points to a specific data type

• Pointer variables are usually named
varPtr

34

cPtr:

char* cPtr;

Example:

0x2004

34

cPtr:

char* cPtr;

Example:

0x2004

Can store an address of

variables of type char

34

cPtr:

char* cPtr;

Example:

0x2004

Can store an address of

variables of type char

• We say cPtr is a pointer to a character

35

Pointers and the & Operator

Example:

35

Pointers and the & Operator

Example:
char c = ’A’;

35

Pointers and the & Operator

Example:
char c = ’A’;

A

c:

0x2000

35

Pointers and the & Operator

Example:
char c = ’A’;

A

c:

0x2000

char *cPtr;

35

Pointers and the & Operator

Example:
char c = ’A’;

A

c:

0x2000

char *cPtr;

cPtr:

0x2004

35

Pointers and the & Operator

Example:
char c = ’A’;

A

c:

0x2000

char *cPtr;

cPtr:

0x2004

cPtr = &c;

35

Pointers and the & Operator

Example:
char c = ’A’;

A

c:

0x2000

char *cPtr;

cPtr:

0x2004

cPtr = &c; Assigns the

address of c to cPtr

35

Pointers and the & Operator

Example:
char c = ’A’;

A

c:

0x2000

char *cPtr;

cPtr:

0x2004

cPtr = &c; Assigns the

address of c to cPtr

0x2000

35

Pointers and the & Operator

Example:
char c = ’A’;

A

c:

0x2000

char *cPtr;

cPtr:

0x2004

cPtr = &c; Assigns the

address of c to cPtr

0x2000

36

Notes on Pointers

36

Notes on Pointers

int* numPtr;

float* xPtr;

Example:

• We can have pointers to any data type

36

Notes on Pointers

int* numPtr;

float* xPtr;

Example:

• We can have pointers to any data type

int *numPtr;

float * xPtr;

Example:

• The * can be anywhere between the

type and the variable

37

Notes on Pointers (cont)

37

Notes on Pointers (cont)

• You can assign the address of a variable to a

“compatible” pointer using the & operator

int aNumber;

int *numPtr;

numPtr = &aNumber;

Example:

37

Notes on Pointers (cont)

• You can assign the address of a variable to a

“compatible” pointer using the & operator

int aNumber;

int *numPtr;

numPtr = &aNumber;

Example:

• You can print the address stored in a pointer
using the %p conversion specifier

printf(“%p”, numPtr);Example:

38

Notes on Pointers (cont)

int *numPtr;

???

numPtr

38

Notes on Pointers (cont)

int *numPtr;

???

numPtr

Beware of pointers

which are not

initialized!

38

Notes on Pointers (cont)

int *numPtr;

???

numPtr

Beware of pointers

which are not

initialized!

39

Notes on Pointers (cont)

int *numPtr = NULL;

NULL

numPtr

• When declaring a pointer, it is a good
idea to always initialize it to NULL

(a special pointer constant)

40

The * Operator

40

The * Operator

• Allows pointers to access variables they
point to

40

The * Operator

• Allows pointers to access variables they
point to

• Also known as “dereferencing operator”

40

The * Operator

• Allows pointers to access variables they
point to

• Also known as “dereferencing operator”

• Should not be confused with the * in the

pointer declaration

41

Pointers and the ∗∗∗∗ Operator

Example:

0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

A

c:

0x2000 0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

A

c:

0x2000

char *cPtr = NULL;

0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

A

c:

0x2000

char *cPtr = NULL;

cPtr:

0x2004

NULL

0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

A

c:

0x2000

char *cPtr = NULL;

cPtr:

0x2004

NULL

cPtr = &c;

0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

A

c:

0x2000

char *cPtr = NULL;

cPtr:

0x2004

NULL

cPtr = &c;

0x2000

0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

A

c:

0x2000

char *cPtr = NULL;

cPtr:

0x2004

NULL

cPtr = &c;

0x2000

*cPtr = ’B’;

0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

A

c:

0x2000

char *cPtr = NULL;

cPtr:

0x2004

NULL

cPtr = &c;

0x2000

*cPtr = ’B’;

Changes the value of
the variable which

cPtr points to

0x2004

41

Pointers and the ∗∗∗∗ Operator

Example: char c = ’A’;

A

c:

0x2000

char *cPtr = NULL;

cPtr:

0x2004

NULL

cPtr = &c;

0x2000

*cPtr = ’B’;

Changes the value of
the variable which

cPtr points to

B

0x2004

42

Lessons

• A pointer is simply a variable that

contains an address

