
Intro to Math 230

Assembly Language Programming

Lecture # 01
01/15/08

2

Lecture Overview

• Course Overview

• Short history of industry trends and

motivation for course need

• Lab: command line environment review

3

M230 Course Description

• Hands-on programming course in C and

assembly language programming

• Covers low level programming and

debugging techniques, computer

architecture, input/output programming

4

Math 230

• Meeting Times

� Lecture:

• Tue, Thu: 8:00 am - 9:15 am, rm 394

� Lab:

• Tue, Thu: 9:30 am - 10:45 am, rm 394

• Class Web Resources:
� http://swccd.blackboard.com

� http://groups.google.com/group/swcClassMath230

5

Instructor Contact Info

� Bruce Smith, Assist. Prof of Mathematics

� Phone: 421-6700, x5291

� e-mail: bsmith@swccd.edu

� Office: room 320F

� Office hours:

• M, W: 12:10 pm - 1:50 pm

• Fri: 12:00 pm - 12:50 pm

– You can also contact me to setup an

appointment outside these hours!

6

Textbook and Materials

• Required:

� Computer Organization and Design,
3rd Edition, by Patterson and
Hennessy

� Programming in C, 2nd Edition, by
Kernighan and Ritchie (K&R)

• On library reserve:

� Digital Principles and Applications,
by Leach

� K&R

7

Attendance

• You can be dropped if you have more than
4 absences (i.e., 2 weeks worth of classes)

• Tardiness and early departures may also be
counted as absences

• Course material discussed during the Lab
section may extend (or even add to) lecture
material. You are responsible for all
material covered in both lab and lecture

8

Evaluation Policy

• Semester Grade

Evaluation Policy

Labs (~10) 10%

Homework (~10) 10%

Projects (~5) 30%

Midterm Exams (2) 25%

Final Exam 25%

Total: 100%

Assigned reading: P&H, Ch 1, 3.1, 3.2 (exclude Fig.3.1)

HW01 (due Thu, 1/24): Exercises 1.1 thru 1.28, 1.54

Lab01 (due Thu, 1/24): see Blackboard

9

Homework, Labs and Projects

• Lab exercises

� every week; to be submitted by the

Thursday lab session

• Homework exercises

� ~every week

• Projects

� ~every 3 weeks

10

Class Policies

• No food or drink (water bottles OK)

• Cell phones silent

• No children or visitors without prior

permission

11

Class Policies

• If you are found cheating or helping

someone cheat, you may receive as much as

–50% of the assignment’s value

• Any further cheating will result in expulsion

from the course.

� Also see SWC Course Catalog regarding

student conduct.

12

Class Resources

• Primarily the info that is packaged with your

textbook

� PCspim

• compiler/assembler

• see text book

� MARs

� Science of Computing Text

� Camera

� Vivio

� LogiSim

13

Is MIPS relevant?

• MIPS

� Microprocessor Without Interlocked

Pipeline Stages

14

Market Share

15

The MIPS share

17

Workstation Peformance

18

Framework for the Course

19

Assembly Language

19

Assembly Language

• Machine language

19

Assembly Language

• Machine language

� The numeric language understood by a
computer’s processor (the CPU).

19

Assembly Language

• Machine language

� The numeric language understood by a
computer’s processor (the CPU).

� Consists entirely of 1’s and 0’s
• low and high voltages

19

Assembly Language

• Machine language

� The numeric language understood by a
computer’s processor (the CPU).

� Consists entirely of 1’s and 0’s
• low and high voltages

� The 1’s and 0’s are usually grouped and
represented as larger numbers (hex or octal)

19

Assembly Language

• Machine language

� The numeric language understood by a
computer’s processor (the CPU).

� Consists entirely of 1’s and 0’s
• low and high voltages

� The 1’s and 0’s are usually grouped and
represented as larger numbers (hex or octal)

• Assembly Language

19

Assembly Language

• Machine language

� The numeric language understood by a
computer’s processor (the CPU).

� Consists entirely of 1’s and 0’s
• low and high voltages

� The 1’s and 0’s are usually grouped and
represented as larger numbers (hex or octal)

• Assembly Language

� Short mnemonics to represent the numeric
(machine) language, e.g., ADD, LW, SUB,
MUL, J, DIV, JAL

19

Assembly Language

• Machine language

� The numeric language understood by a
computer’s processor (the CPU).

� Consists entirely of 1’s and 0’s
• low and high voltages

� The 1’s and 0’s are usually grouped and
represented as larger numbers (hex or octal)

• Assembly Language

� Short mnemonics to represent the numeric
(machine) language, e.g., ADD, LW, SUB,
MUL, J, DIV, JAL

� Converted to machine language

20

Babel

21

Applications

• Embedded systems

� flight control

� air-conditioning

� home alarm

� digital phone

• Create device drivers

� printer drivers

� USB drivers

• Computer games needing HW access

� small, quick code

22

What are “Machine Structures”?

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

22

What are “Machine Structures”?

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

M 230

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Instruction Set
Architecture

Datapath & Control

MemoryHardware

Software Assembler

22

What are “Machine Structures”?

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

M 230

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Instruction Set
Architecture

Datapath & Control

MemoryHardware

Software Assembler

* Coordination of many

22

What are “Machine Structures”?

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

M 230

I/O systemProcessor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Instruction Set
Architecture

Datapath & Control

MemoryHardware

Software Assembler

* Coordination of many

levels (layers) of abstraction

23

Levels of Representation

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(Logic, Logisim, Verilog, etc.)

Compiler

Assembler

Machine
Interpretation

Logic Circuit Description
(Logisim, etc.)

Architecture
Implementation

23

Levels of Representation

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(Logic, Logisim, Verilog, etc.)

Compiler

Assembler

Machine
Interpretation

Logic Circuit Description
(Logisim, etc.)

Architecture
Implementation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

23

Levels of Representation

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(Logic, Logisim, Verilog, etc.)

Compiler

Assembler

Machine
Interpretation

Logic Circuit Description
(Logisim, etc.)

Architecture
Implementation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

23

Levels of Representation

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(Logic, Logisim, Verilog, etc.)

Compiler

Assembler

Machine
Interpretation

Logic Circuit Description
(Logisim, etc.)

Architecture
Implementation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

24

Anatomy: 5 components of any Computer

Personal Computer

Processor

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory

(where
programs,
data
live when
running)

Devices

Input

Output

Keyboard,

Mouse

Display,

Printer

Disk
(where
programs,
data
live when
not running)

25

Overview of Physical Implementations

• Integrated Circuits (ICs)

� Combinational logic circuits, memory elements, analog
interfaces.

• Printed Circuits (PC) boards

� substrate for ICs and interconnection, distribution of CLK,
Vdd, and GND signals, heat dissipation.

• Power Supplies

� Converts line AC voltage to regulated DC low voltage
levels.

• Chassis (rack, card case, ...)

� holds boards, power supply, provides physical interface to
user or other systems.

• Connectors and Cables.

The hardware out of which we make systems.

26

Integrated Circuits (2005 state-of-the-art)

• Primarily Crystalline Silicon

• 1mm - 25mm on a side

• 2005 - feature size ~ 90 nm = 90 x 10-9m

• 100 - 1000M transistors

• (25 - 100M “logic gates")

• 3 - 10 conductive layers

• “CMOS” (complementary metal oxide

semiconductor) - most common.

• Package provides:

� spreading of chip-level signal paths to board-

level

� heat dissipation.

• Ceramic or plastic with gold wires.

Chip in Package

Bare Die

27

Printed Circuit Boards

• fiberglass or ceramic

•1-20 conductive layers

•1-20 in on a side

• IC packages are
soldered down.

•Provides:

� Mechanical support

� Distribution of power
and heat.

28

Technology Trends:

Microprocessor Complexity

2X Transistors / Chip
Every 1.5 years

Called

“Moore’s Law”

Gordon Moore

Intel Cofounder

Year

#
 o

f
tr

a
n

s
is

to
rs

 o
n

 a
n

 I
C

29

Technology Trends:

Memory Capacity (Single-Chip DRAM)
size

Year

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

year size (Mbit)

1980 0.0625

1983 0.25

1986 1

1989 4

1992 16

1996 64

1998 128

2000 256

2002 512

2004 1024 (1Gbit)
• Now 1.4X/yr, or 2X every 2 years.

• 8000X since 1980!

B
it

s

Year

30

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e
rf

o
rm

a
n
c
e
 (

v
s
.
V

A
X

-1
1
/7

8
0
)

25%/year

52%/year

20%/year

Technology Trends:

Uniprocessor Performance (SPECint)

• VAX : 1.25x/year 1978 to 1986

• RISC + x86: 1.52x/year 1986 to 2002

• RISC + x86: 1.20x/year 2002 to present

1.25x/year

1.52x/year

1.20x/year

P
e

rf
o

rm
a
n

c
e

 (
v

s
.
V

A
X

-1
1

/7
8
0

)

31

Computer Technology - Dramatic Change!

• Memory

� DRAM capacity: 2x / 2 years (since ‘96);

64x size improvement in last decade.

• Processor

� Speed 2x / 1.5 years (since ‘85); [slowing!]

100X performance in last decade.

• Disk

� Capacity: 2x / 1 year (since ‘97)

250X size in last decade.

32

Computer Technology - Dramatic Change!

•State-of-the-art PC when you graduate:
(at least…)

� Processor clock speed: 5000 MegaHertz
(5.0 GigaHertz)

� Memory capacity: 8000 MegaBytes
(8.0 GigaBytes)

� Disk capacity: 2000 GigaBytes
(2.0 TeraBytes)

� New units! Mega ⇒ Giga, Giga ⇒ Tera

(Tera ⇒ Peta, Peta ⇒ Exa, Exa ⇒ Zetta
Zetta ⇒ Yotta = 1024)

We’ll see that Kilo, Mega, etc. are incorrect later!

33

M230: So what's in it for me?

•Learn some of the big ideas in CS & engineering:

� Principle of abstraction, used to build systems as
layers

� 5 Classic components of a Computer

� Data can be anything (integers, floating point,
characters): a program determines what it is

� Stored program concept: instructions just data

� Principle of Locality, exploited via a memory
hierarchy (cache)

� Greater performance by exploiting parallelism

� Compilation v. interpretation thru system layers

� Principles/Pitfalls of Performance Measurement

34

Others Skills learned in 230

•Learning C

� If you know one, you should be able to learn another

programming language largely on your own

� Given that you know C++ or Java, should be easy to pick

up their ancestor, C

•Assembly Language Programming

� This is a skill you will pick up, as a side effect of

understanding the Big Ideas

•Hardware design

� We’ll learn just the basics of hardware design

35

Course Lecture Outline
• Number representations

• C-Language (basics + pointers)

• Storage management

• Assembly Programming
• Floating Point

• make-ing an Executable (compilation, assembly)

• Logic Circuit Design

• CPU organization

• Pipelining

• Caches

• Virtual Memory

• Performance

• I/O Interrupts

• Disks, Networks

• Advanced Topics

36

37

Today’s Lab Work

• Log onto computer (swcstudent):

� username: pmath

� password: 7pmath

• Log onto Blackboard

� swccd.edu or swccd.blackboard.com
• announcements

• grades

• Updating E-mail on Webadvisor

• sending e-mail

• Explore command-line environment

38

Lab 0

• dir

• cd

• del

• pwd

• pushd/popd

• more

• path

• set

• redirection

• wildcards

39

Binary Numbers

• Digits are 1 and 0

� 1 = true

� 0 = false

• MSB – most significant bit

• LSB – least significant bit

• Bit numbering: 015

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

MSB LSB

40

Base-10 (decimal) arithmetic

• Uses the ten numbers from 0 to 9

• Each column represents a power of 10

Thousands (103) column

Hundreds (102) column

Tens (101) column

Ones (100) column

1999
10

= 1x103 + 9x102 + 9x101 + 9x100

41

Base-2 (binary) arithmetic

• Uses the two numbers from 0 to 1

• Every column represents a power of 2

41

Base-2 (binary) arithmetic

• Uses the two numbers from 0 to 1

• Every column represents a power of 2

1001
2

= 1x23 + 0x22 + 0x21 + 1x20

Eights (23) column

Fours (22) column

Twos (21) column

Ones (20) column

42

Translating Binary to Decimal

Weighted positional notation shows how to calculate
the decimal value of each binary bit:

dec = (D
n-1

×××× 2n-1) ++++ (D
n-2

×××× 2n-2) ++++ ... ++++ (D
1

×××× 21) ++++
(D

0
×××× 20)

D = binary digit

binary 00001001 = decimal 9:

(1 × 23) + (1 × 20) = 9

43

Converting from base-2 to base-10

32 16 8 4 2 1
 1 0 0 1 =
 1 0 1 1 =
 1 0 1 0 1 =
1 1 1 1 1 1 =

44

Converting from base-10 to base-2 (on the fly)

64 32 16 8 4 2 1
 = 16
 = 55
 = 75
 = 84

45

Converting from base-10 to base-2 (using division)

• Repeatedly divide the decimal integer by 2.
Each remainder is a binary digit in the
translated value:

37 = 100101

46

Addition

1 9 9 8 1 0 1 1
+ 1 1 + 1 1

2 0 0 9 1 1 1 0

Base-10 Base-2

47

Binary Addition

• Starting with the LSB, add each pair of
digits, include the carry if present.

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

48

Practice binary arithmetic

1 0 1 1 1 1 1
+ 1 1 + 1

